(a)
The volume of gas at A.
(a)
Answer to Problem 80P
The volume at A is
Explanation of Solution
Given:
The pressure at A is
The temperature at A is
Formula used:
The expression for volume at A is given by,
Calculation:
The volume at A is calculated as,
Conclusion:
Therefore, the volume at A is
(b)
The volume and temperature of gas at B.
(b)
Answer to Problem 80P
The volume and temperature at B are
Explanation of Solution
Formula used:
The expression for volume at B is given by,
The expression for temperature at B is given by,
Calculation:
The volume at B is calculated as,
The temperature at B is calculated as,
Conclusion:
Therefore, the volume and temperature at B are
(c)
The temperature of gas at C.
(c)
Answer to Problem 80P
The temperature at C is
Explanation of Solution
Formula used:
The expression for temperature at C as process is isothermal given by,
Calculation:
The temperature at C is calculated as,
Conclusion:
Therefore, the temperature at C is
(d)
The volume of gas at C.
(d)
Answer to Problem 80P
The volume at C is
Explanation of Solution
Formula used:
The expression for volume at C as process is given by,
Calculation:
The volume at C is calculated as,
Conclusion:
Therefore, the volume at C is
(e)
The work done by gas in each segment of cycle.
(e)
Answer to Problem 80P
The work done in process AB, BC and CA are
Explanation of Solution
Formula used:
The work done in process AB is given by,
The expression for work done in process BC is given by,
The expression for work done in process CA is given by,
Calculation:
The work done in process AB is calculated as,
The work done in process BC is calculated as,
The work done in process CA is calculated as,
Conclusion:
Therefore, the work done in process AB, BC and CA are
(f)
The heat absorbed in each segment of cycle.
(f)
Answer to Problem 80P
The heat absorbed in process AB, BC and CA are
Explanation of Solution
Formula used:
The expression for heat absorbed in process AB is given by,
The expression for heat absorbed in process CA is given by,
Calculation:
The heat absorbed in process AB is calculated as,
The heat absorbed in process BC is 0 because the process is adiabatic.
The heat absorbed in process CA is calculated as,
Conclusion:
Therefore, the heat absorbed in process AB, BC and CA are
Want to see more full solutions like this?
Chapter 19 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning