Concept explainers
(a)
The direction at which the wire resting on two parallel horizontal rails would accelerate due to a magnetic field
Answer to Problem 72QAP
The force on the wire due to the magnetic force will point towards the right and hence the wire will accelerate to the right.
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal
Formula used:
Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand.
Calculation:
Application of the right-hand rule will give the direction of magnetic force on the wire that is initially at rest on two parallel conducting rails.
Conclusion:
The force on the wire due to the magnetic force will point towards the right and hence the wire will accelerate to the right.
(b)
The magnetic force on the wire that rests on two parallel, horizontal conducting rails.
Answer to Problem 72QAP
The magnetic force on the wire = 100 N (rounded to one significant figure)
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal conducting rails. A uniform magnetic field with a magnitude of 1.2 T is directed into the page.
Formula used:
The magnitude of the magnetic force acting on the wire due to a magnetic field is given by the following equation
Calculation:
The angle between the magnetic field and the force is 90 degrees as they are perpendicular to each other. Substituting the values to equation (a);
Conclusion:
The magnetic force on the wire = 100 N (rounded to one significant figure)
(c)
How long must the rails be of the wire starting from rest is to reach a speed of 200 m/s.
Answer to Problem 72QAP
The length of the rails to facilitate wire reaching a speed of 200 m/s= 8 m
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal conducting rails. A uniform magnetic field with a magnitude of 1.2 T is directed into the page.
Also, from the part b) above we have calculated the magnitude of magnetic force on the wire to be 96 N.
Formula used:
Calculation:
One can determine the direction of the magnetic force using the right hand rule as mentioned in part a).Assuming that the magnetic force is the only force that is acting on the wire along the horizontal direction(x direction), the wire would undergo constant acceleration towards x direction. Hence one could apply equation (b) to the motion of the wire;
Applying this result to (c)
Conclusion:
The length of the rails to facilitate wire reaching a speed of 200 m/s= 8 m
(d)
What would be the direction of the movement of the wire if the magnetic field was directed out of the page
Answer to Problem 72QAP
If the magnetic field is directed out of the page, force on the wire due to the magnetic field would point to the left and the wire would accelerate in that direction. The numerical value of the magnetic force would be the same as calculated in part b).
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal conducting rails. A uniform magnetic field with a magnitude of 1.2 T is directed out of the page.
Formula used:
Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand
Calculation:
Application of the right hand rule would give the direction of movement of the wire.
Conclusion:
If the magnetic field is directed out of the page, force on the wire due to the magnetic field would point to the left and the wire would accelerate in that direction. The numerical value of the magnetic force would be the same as calculated in part b).
(e)
What would be the direction of the movement of the wire if the magnetic field was directed towards the top of the page
Answer to Problem 72QAP
If the magnetic field is directed towards to the top of the page the magnetic force on the wire would be zero because the current and the magnetic field would be antiparallel to each other.
Explanation of Solution
Given:
A steady current of 100 A passes through a wire (of weight m=40 g=0.040 kg; length = 0.8 m) that can slide on two parallel, horizontal conducting rails. A uniform magnetic field with a magnitude of 1.2 T is directed out of the page.
Formula used:
Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand
Calculation:
The magnetic field and the current must not be antiparallel to facilitate a movement of the wire.
Conclusion:
If the magnetic field is directed towards to the top of the page the magnetic force on the wire would be zero because the current and the magnetic field would be antiparallel to each other
Want to see more full solutions like this?
Chapter 19 Solutions
COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
- A car driving at 27m/s veers to the left to avoid a deer in the road. The maneuver takes 2.0s and the direction of travel is altered by 20 degrees. What is the average acceleration during the constant speed maneuver? Do this in accordance with the example in the chapter.arrow_forwardNo No No Chatgpt pls will upvotearrow_forward2 C01: Physical Quantities, Units and Measurementscobris alinu zotinUD TRO Bendemeer Secondary School Secondary Three Express Physics Chpt 1: Physical Quantities, Unit and Measurements Assignment Name: Chen ShiMan loov neowled soria 25 ( 03 ) Class: 3 Respect 6 Date: 2025.01.22 1 Which group consists only of scalar quantities? ABCD A acceleration, moment and energy store distance, temperature and time length, velocity and current mass, force and speed B D. B Which diagram represents the resultant vector of P and Q? lehtele 시 bas siqpeq olarist of beau eldeo qirie-of-qi P A C -B qadmis rle mengaib priwollot erT S Quilons of qira ono mont aboog eed indicator yh from West eril to Inioqbim srij enisinoo MA (6) 08 bas 8A aldao ni nolent or animaleb.gniweb slepe eld 260 km/h D 1 D. e 51arrow_forward
- The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0 s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s? a (m/s²) as -2 0 2 t(s) 4arrow_forwardTwo solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN. P 125 kN B 125 kN C 0.9 m 1.2 m The smallest allowable value of the diameter d₁ is The smallest allowable value of the diameter d₂ is mm. mm.arrow_forwardWestros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.arrow_forward
- a) What is the lenght of x? b) Findθ c) Find ϕarrow_forwardA surveyor measures the distance across a straight river by the following method: Starting directly across from a tree on the opposite bank, he walks x = 97.7 m along the riverbank to establish a baseline. Then he sights across to the tree. The angle from his baseline to the tree is θ = 33.0 °. How wide is the river?arrow_forwardA small turtle moves at a speed of 697. furlong/fortnight. Find the speed of the turtle in centimeters per second. Note that 1.00 furlong = 220. yards, 1.00 yard = 3.00 feet, 1.00 foot = 12.0 inches, 1.00 inch = 2.54 cm, and 1.00 fortnight = 14.0 days.arrow_forward
- The landmass of Sokovia lifted in the air in Avengers: Age of Ultron had a volume of about 1.98 km3. What volume is that in m3?arrow_forwardA fathom is a unit of length, usually reserved for measuring the depth of water. A fathom is exactly 6.00 ft in length. Take the distance from Earth to the Moon to be 252,000 miles, and use the given approximation to find the distance in fathoms. 1 mile = 5280 ft. (Answer in sig fig.)arrow_forwardNo chatgpt pls will upvotearrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning