Concept explainers
(a)
The current that is needed to generate a magnetic field that has a magnitude of 0.50 T
Answer to Problem 71QAP
The current that is needed to generate a magnetic field of 0.50 T= 3.0 x 102 A(rounded to two significant figures)
Explanation of Solution
Given:
A coil of wire has a diameter of 15 cm = 0.15 m is consisting 250 windings. The magnitude of the magnetic field generated by the coil due to a current that flows through is 0.050 T at a perpendicular distance of 30 cm from the center of the coil.
Formula used:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Calculation:
It is given that the magnitude of the magnetic field at perpendicular distance 3.0 cm from the center of the coil is 0.50 T. The diameter of the coil is given as 15 cm which implies that the radius of the coil is 7.5 cm. Also, the number of the windings of the coil is given as 250.Substituing these values to equation (a) one could easily find the current that generate the desired magnetic field of 0.50 T.
Conclusion:
The current that is needed to generate a magnetic field of 0.50 T= 3.0 x 102 A (rounded to two significant figures)
(b)
The magnitude of magnetic field at the center of the coil at the forehead
Answer to Problem 71QAP
The magnitude of the magnetic field at the center of the forehead= 0.62 T
Explanation of Solution
Given:
A coil of wire has a diameter of 15 cm = 0.15 m is consisting 250 windings. The magnitude of the magnetic field generated by the coil due to a current that flows through is 0.050 T at a perpendicular distance of 30 cm from the center of the coil.
Formula used:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Calculation:
It is deduced from part a) that the current that generate a magnetic field of magnitude 0.50 T at a perpendicular distance of 3.0 cm from the center of the coil is 298 A. Now we are asked to calculate the magnitude of the magnetic field at the center of the coil. The diameter of the coil is given as 15 cm which implies that the radius of the coil is 7.5 cm. Also, the number of the windings of the coil is given as 250.Substituing these values to equation (a) one could easily find the magnitude of the magnetic field at the center. Note here that since we have to calculate the magnetic field at the center of the coil the perpendicular distance measured from the center of the coil(z) is 0 cm.
Substituting to equation(a);
Conclusion:
The magnitude of the magnetic field at the center of the coil = 0.62 T
(c)
If the current needed in part a) is too high how could one easily achieve the same magnetic field of 0.50 T
Answer to Problem 71QAP
The easiest way that one could compensate for higher currents inside a loop in order to generate a particular magnetic field magnitude is to increase the number of windings in the loop.
Explanation of Solution
Given:
From the calculations in part a) it has been deduced that a current of 298 A is required to generate a magnetic field of 0.50 T from a loop that has 250 windings.
Calculation:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Careful inspection of equation (a) reveals us that Bz is directly proportional to N.So instead of increasing the current(i) one could increase N to achieve higher Bz values.
Conclusion:
The easiest way that one could compensate for higher currents inside a loop in order to generate a particular magnetic field magnitude is to increase the number of windings in the loop
Want to see more full solutions like this?
Chapter 19 Solutions
FlipIt for College Physics (Algebra Version - Six Months Access)
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill