Concept explainers
(a)
The magnitude of magnetic field at y =0 cm according to the adapted coordinate system

Answer to Problem 70QAP
The magnitude of the magnetic field at (y =0 cm) = 0 T
Or in other words there is no magnetic field at y= 0 cm
Explanation of Solution
Given:
Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.
Formula used:
Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand.
Calculation:
One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.
Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.
Applying the right hand rule one could clearly see that Btop acts in the -z direction while Bbottomacts in the +z direction.
Let B= total magnitude of the magnetic field at y=0 cm
Then B = Btop + Bbottom
Substituting for equation (a) we could find B as follows where rtop= distance from the top wire to y=0 and rbottom= distance from the bottom wire to y=0.
Conclusion:
The magnitude of the magnetic field at (y =0 cm) = 0 T
Or in other words there is no magnetic field at y= 0 cm
(b)
The magnitude of magnetic field at y = 1.0 cm according to the adapted coordinate system

Answer to Problem 70QAP
The magnitude of the magnetic field at (y =1.0 cm) = (-1.2 x 10-4)T
Explanation of Solution
Given:
Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.
Calculation:
One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.
Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.
Applying the right handrule, one could clearly see that Btop acts in the -z direction while Bbottomacts in the +z direction.
Let B= total magnitude of the magnetic field at y=1.0 cm
Then B = Btop + Bbottom
Substituting for equation (a) we could find B as follows where rtop= distance from the topwire to y=1.0cm and rbottom= distance from the bottom wire to y=1.0 cm.
Conclusion:
The magnitude of the magnetic field at (y =1.0 cm) = (-1.2 x 10-4)T
(c)
The magnitude of magnetic field at y = 4.0 cm according to the adapted coordinate system

Answer to Problem 70QAP
The magnitude of the magnetic field at (y =4.0 cm) = (2.6 x 10-4)T
Explanation of Solution
Given:
Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.
Calculation:
One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.
Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.
Applying the right hand rule, one could clearly see that Btop acts in the +z direction while Bbottomalso acts in the +z direction.
Let B= total magnitude of the magnetic field at y=4.0 cm
Then B = Btop + Bbottom
Substituting for equation (a) we could find B as follows where rtop= distance from the top wire to y=4.0cm and rbottom= distance from the bottom wire to y=4.0 cm.
Conclusion:
The magnitude of the magnetic field at (y =4.0 cm) = (2.6 x 10-4)T
Want to see more full solutions like this?
Chapter 19 Solutions
COLLEGE PHYSICS,VOLUME 1
- In the movie Fast X, a 10100 kg round bomb is set rolling in Rome. The bomb gets up to 17.6 m/s. To try to stop the bomb, the protagonist Dom swings the counterweight of a crane, which has a mass of 354000 kg into the bomb at 3.61 m/s in the opposite direction. Directly after the collision the crane counterweight continues in the same direction it was going at 2.13 m/s. What is the velocity (magnitude and direction) of the bomb right after the collision?arrow_forwardDon't use aiarrow_forwardMake sure to draw a sketch with scale pleasearrow_forward
- Make sure to draw a sketch with scalearrow_forwardUltimate Byleth and Little Mac fight. Little Mac, who is a boxer, dashes forward at 26.6 m/s, fist first. Byleth moves in the opposite direction at 3.79 m/s, where they collide with Little Mac’s fist. After the punch Byleth flies backwards at 11.1 m/s. How fast, and in what direction, is Little Mac now moving? Little Mac has a mass of 48.5 kg and Byleth has a mass of 72.0 kg.arrow_forwardMake sure to draw a sketch with scale as wellarrow_forward
- Make sure to draw a sketch with scale pleasearrow_forwardKirby jumps towards his enemy/ally, Meta Knight, at 2.06 m/s while Meta Knight glides in the opposite direction (toward Kirby) at 5.06 m/s. Kirby then begins to inhale, swallowing Meta Knight. What is Kirby/Meta Knight’s velocity immediately after being swallowed? Please put the magnitude of the velocity and then mark direction using dropdown menu. Kirby has a mass of 0.283 kg and Meta Knight has a mass of 0.538 kg.arrow_forwardNo Aiarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





