CONCEPTUAL INTEGRATED SCIENCE (PEARSON+
3rd Edition
ISBN: 2818440059223
Author: Hewitt
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 68TE
Why is Ohm’s law important to how quickly an action potential travels down an axon?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
12. (a) Using Eq. AQ=CAV and the data in the Table, calculate the number of ions entering the axon during
the action potential, per meter of nonmyelinated axon length. (The charge on the ion is 1.6 x 10-19 coulomb.)
(b) During the resting state of the axon, typical concentrations of sodium and potassium ions inside the axon
are 15 and 150 millimole/liter, respectively. From the data in the Table, calculate the number of ions per
meter length of the axon.
Table 13.1 Properties of Sample Axons
Hint:
1 F (farad) = 1coulomb/1 volt
Property
Nonmyelinated axon
Myelinated axon
Axon radius
5 x 10-m
5 x 10-6 m
1 mole /liter = 6.02 x 1020 particles (ions, atoms, etc. ) Resistance per unit length of fluid
cm
6.37 x 10°2/m
6.37 x 10°2/m
both inside and outside axon (r)
Conductivity per unit length of
axon membrane (gm)
1.25 x 10-4 mho/m
In the resting state, the axon voltage is -70mV.
During the pulse, the voltage changes to about
+30mV, resulting in a net voltage change across
the membrane of 100…
a) What was the smallest voltage required to produce a contraction (the threshold voltage)? What proportion of the fibers in the muscle do you think were contracting to produce this small response?
b) What was the smallest voltage required to produce the maximum (largest) contraction? What proportion of the fibers in the muscle do you think were contracting to produce this maximal response?
4.Which option is correct
Chapter 19 Solutions
CONCEPTUAL INTEGRATED SCIENCE (PEARSON+
Ch. 19 - What are the four main types of tissues in the...Ch. 19 - Multiple tissues combine to make an_____, a...Ch. 19 - What is an organ system?Ch. 19 - What is homeostasis?Ch. 19 - Prob. 5RCCCh. 19 - Prob. 6RCCCh. 19 - Which part of the brain is responsible for balance...Ch. 19 - Prob. 8RCCCh. 19 - Describe the functions of each of the four lobes...Ch. 19 - Which structures make up the central nervous...
Ch. 19 - Prob. 11RCCCh. 19 - What are the functions of sensory neurons,...Ch. 19 - Prob. 13RCCCh. 19 - What are the two types of hormones? How does each...Ch. 19 - Why is the anterior pituitary sometimes called the...Ch. 19 - Prob. 16RCCCh. 19 - Prob. 17RCCCh. 19 - Prob. 18RCCCh. 19 - How do sperm get past the zona pellucida that...Ch. 19 - Prob. 20RCCCh. 19 - Prob. 21RCCCh. 19 - Prob. 22RCCCh. 19 - How does a signal from a motor neuron result in...Ch. 19 - Prob. 24RCCCh. 19 - Prob. 25TISCh. 19 - Prob. 26TISCh. 19 - Prob. 27TISCh. 19 - What causes an action potential to travel down a...Ch. 19 - How does an electrical synapse work?Ch. 19 - Prob. 30TISCh. 19 - Why do action potentials travel more quickly down...Ch. 19 - Why havent any animals evolved large numbers of...Ch. 19 - Prob. 33TISCh. 19 - Prob. 34TISCh. 19 - Prob. 35TISCh. 19 - Prob. 36TISCh. 19 - What are the two types of light-sensitive cells in...Ch. 19 - Describe how sound waves enter the ear and...Ch. 19 - Prob. 39TISCh. 19 - Prob. 40TISCh. 19 - Prob. 43TCCh. 19 - The membrane potential is the electrical potential...Ch. 19 - Rank the two types of light-sensitive cells, rods...Ch. 19 - Two different types of neurons transmit pain...Ch. 19 - The human retina has an area of about 1000 mm2. If...Ch. 19 - You have about 1000 different kinds of smell...Ch. 19 - The egg is a large cell and contributes almost all...Ch. 19 - Is the brain a tissue, an organ, or an organ...Ch. 19 - The stomach is an organ. Describe some of the...Ch. 19 - Why do you shiver when you are cold?Ch. 19 - Prob. 53TECh. 19 - When you exercise, your cells use more oxygen and...Ch. 19 - This man is cooling off after an intense run. He...Ch. 19 - When you move your body, is your cerebrum in...Ch. 19 - Why is the surface of your brain wrinkled?Ch. 19 - Prob. 58TECh. 19 - Describe the structure of a typical neuron.Ch. 19 - Of the three types of neuronssensory neurons,...Ch. 19 - What happens during the fight or flight response?Ch. 19 - Is a neuron that slows your heartbeat part of the...Ch. 19 - What is an action potential? Describe how the...Ch. 19 - Prob. 64TECh. 19 - What would be the effect of removing the myelin...Ch. 19 - Prob. 66TECh. 19 - Prob. 67TECh. 19 - Why is Ohms law important to how quickly an action...Ch. 19 - Prob. 69TECh. 19 - Prob. 70TECh. 19 - Prob. 71TECh. 19 - Prob. 72TECh. 19 - Many nocturnal animals have only rods in their...Ch. 19 - Are your rods or cones are more important for...Ch. 19 - Prob. 75TECh. 19 - In some people, the bones of the middle ear...Ch. 19 - Prob. 77TECh. 19 - Prob. 78TECh. 19 - On a brilliant, sunny day, you take a long hike...Ch. 19 - Prob. 80TECh. 19 - Prob. 81TECh. 19 - Prob. 82TECh. 19 - Prob. 83TECh. 19 - Does a fertilized human egg make anything other...Ch. 19 - Prob. 85TECh. 19 - Prob. 86TECh. 19 - Prob. 87TECh. 19 - Prob. 88TECh. 19 - Prob. 89TECh. 19 - Prob. 90TDICh. 19 - Prob. 91TDICh. 19 - Prob. 92TDICh. 19 - If a signaling neuron has an excitatory effect on...Ch. 19 - Stars come in different colors depending on their...Ch. 19 - Prob. 95TDICh. 19 - Jet lag describes the fatigue and disorientation...Ch. 19 - Prob. 97TDICh. 19 - Prob. 98TDICh. 19 - Prob. 99TDICh. 19 - Explain what happens when you wiggle your toe....Ch. 19 - Prob. 1RATCh. 19 - Which of the following does NOT play a role in...Ch. 19 - Which part of the brain controls posture, balance,...Ch. 19 - Prob. 4RATCh. 19 - What happens at the start of an action potential?...Ch. 19 - Which of the following allows an action potential...Ch. 19 - Chemoreception characterizes a vision. b hearing....Ch. 19 - Prob. 8RATCh. 19 - The structure that provides oxygen and nutrients...Ch. 19 - Prob. 10RAT
Additional Science Textbook Solutions
Find more solutions based on key concepts
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Explain how the use of an oxygen isotope helped elucidate the chemistry of photosynthesis.
Campbell Biology (11th Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An unmyelinated segment of the axon has a radius of r=2 pm and a length of L=7 cm. what is its membrane capacitance (Farad) ?. (The %3D capacitance per unit area, Cm = 0.01 F/m2). %3D A. 0.000000008792 B. None, C. 0.00000002638 D. 0.00000003517 E. 0.00000001758arrow_forwardAssume the length of an axon membrane of about 0.10 cm is excited by an action potential (length excited = nerve speed ✕ pulse duration = 50 m/s ✕ 2.0 ms = 10 cm). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ??oA/d and Q = CΔV to investigate the charge as follows. Use typical values for a cylindrical axon of cell thickness d = 1.6 ✕ 10−8 m, axon radius r = 1.2 ✕ 101 ?m, and cell-wall dielectric constant ? = 2.3. A diagram shows a collection of positive and negative charges in and around an axon. The diagram is divided into three sections, one on top of the other. The top section is labeled "External fluid". A row of positive charges labeled "Positive charge layer" lies along the bottom side of this section. Above the row of positive charges, there is an even mixture of…arrow_forwardAssume the axon had a diameter of 30 um and was 5 cm long. The capacitance of this axon would bearrow_forward
- 67) You identify a new neurotransmitter and call it Jerrionin. In order to characterize the actions of this neurotransmitter, you conduct an experiment in which you stimulate the Jerrionin- containing neuron while recording the postsynaptic current using voltage clamp. You get the following results: EPSC (NA) 500 -300 -100 -110 Vm (mv) -45 -60 -70 -75 2 in sol 4299 661 by 3 4 time (ms) umba si a) On the graphing paper provided, draw the Current-Voltage curve for this response b) What is the reversal potential for the Jerrionin receptor? 5 6 7arrow_forwardWrite a question about the electrical action potential of the human nervous system in terms of physics.arrow_forwardSaccharomyces cerevisiae is a single-celled yeast that is often used as a model for eukaryotic cells, as it contains all of the important organelles of these cells. The genome of Saccharomyces cerevisiae, commonly known as brewer's yeast, has been completely mapped, making it suitable for genetic engineering experiments. The amount of electric charge on the cell walls plays a significant role in the interaction of these cells with their environment. To determine -9 the electric charge on yeast cells, which is a function of their size, the cells are often placed in electric fields and their motion in these fields is measured. In one such experiment, Saccharomyces cells of mass 3.00 x 10- 9 placed at rest in a uniform electric field of magnitude 10.0 N/C were measured to be traveling with a speed of 3.10 x 102 um/s after traversing a distance of 20.0 μm along the direction of the electric field. What was the magnitude and sign of the charge on this batch of yeast cells? (a) magnitude (in…arrow_forward
- Saccharomyces cerevisiae is a single-celled yeast that is often used as a model for eukaryotic cells, as it contains all of the important organelles of these cells. The genome of Saccharomyces cerevisiae, commonly known as brewer's yeast, has been completely mapped, making it suitable for genetic engineering experiments. The amount of electric charge on the cell walls plays a significant role in the interaction of these cells with their environment. To determine the electric charge on yeast cells, which is a function of their size, the cells are often placed in electric fields and their motion in these fields is measured. In one such experiment, Saccharomyces cells of mass 3.00 x 10-⁹ g placed at rest in a uniform electric field of magnitude 10.0 N/C were measured to be traveling with a speed of 3.20 x 102 μm/s after traversing a distance of 12.0 μm along the direction of the electric field. What was the magnitude and sign of the charge on this batch of yeast cells? (a) magnitude (in…arrow_forwardSaccharomyces cerevisiae is a single-celled yeast that is often used as a model for eukaryotic cells, as it contains all of the important organelles of these cells. The genome of Saccharomyces cerevisiae, commonly known as brewer's yeast, has been completely mapped, making it suitable for genetic engineering experiments. The amount of electric charge on the cell walls plays a significant role in the interaction of these cells with their environment. To determine the electric charge on yeast cells, which is a function of their size, the cells are often placed in electric fields and their motion in these fields is measured. In one such experiment, Saccharomyces cells of mass 3.00 x 109 g placed at rest in a uniform electric field of magnitude 10.0 N/C were measured to be traveling with a speed of 3.60 x 10² μm/s after traversing a distance of 16.0 μm along the direction of the electric field. What was the magnitude and sign of the charge on this batch of yeast cells? (a) magnitude (in C)…arrow_forwardSaccharomyces cerevisiae is a single-celled yeast that is often used as a model for eukaryotic cells, as it contains all of the important organelles of these cells. The genome of Saccharomyces cerevisiae, commonly known as brewer's yeast, has been completely mapped, making it suitable for genetic engineering experiments. The amount of electric charge on the cell walls plays a significant role in the interaction of these cells with their environment. To determine the electric charge on yeast cells, which is a function of their size, the cells are often placed in electric fields and their motion in these fields is measured. In one such experiment, Saccharomyces cells of mass 3.00 × 10¯ g placed at rest in a uniform electric field of magnitude 10.0 N/C were measured to be traveling with a speed of 3.20 × 102 μm/s after traversing a distance of 16.0 µm along the direction of the electric field. What was the magnitude and sign of the charge on this batch of yeast cells? -9 (a) magnitude (in…arrow_forward
- Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed x pulse duration equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = K² A/d and Q radius r = 1.6 × 10¹ μm, and cell-wall dielectric constant x = 2.9. = Positive charge layer Negative charge layer + External fluid Axon wall membrane No Axon radius = r + Internal fluid + How many sodium ions (Na+) is this? Na+ ions d + (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 × 10-² V.) -2 9.03E-10 C How many K+ ions are on the outside of the axon assuming an initial potential difference of 7.0 × 10-² V? 5.639E9 K+ ions = 50.0 m/s X 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall CAV to investigate the…arrow_forward(III) During an action potential, Na* ions move into the cell at a rate of about 3 × 10-7 mol/m² - s. How much power must be produced by the "active Na* pumping" system to produce this flow against a +30-mV potential difference? Assume that the axon is 10 cm long and 20 µm in diameter.arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed pulse duration = 50.0 m/s 2.0 103 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in Figure P18.43. Model the axon as a parallel-plate capacitor and take C = 0A/d and Q = C V to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.0 108 m, axon radius r = 1.0 101 m, and cell-wall dielectric constant = 3.0. (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. How many K+ ions are on the outside of the axon assuming an initial potential difference of 7.0 102 V? Is this a large charge per unit area? Hint: Calculate the charge per unit area in terms of electronic charge e per squared (2). An atom has a cross section of about 1 2 (1 = 1010 m). (b) How much positive charge must flow through the cell membrane to reach the excited state of + 3.0 102 V from the resting state of 7.0 102 V? How many sodium ions (Na+) is this? (c) If it takes 2.0 ms for the Na+ ions to enter the axon, what is the average current in the axon wall in this process? (d) How much energy does it take to raise the potential of the inner axon wall to + 3.0 102 V, starting from the resting potential of 7.0 102 V? Figure P18.43 Problem 43 and 44.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY