The E 0 for the following reaction has to be determined. Ag 2 CrO 4 (s) + 2e - → 2Ag(s) + CrO 4 2- (aq) Concept introduction: According to the first law of thermodynamics , the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system. The equation is as follows. ΔU = Q - W ΔU = Change in internal energy Q = Heat added to the system W=Work done by the system In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell. ΔG 0 = -nFE 0 n = Number of moles transferred per mole of reactant and products F = Faradayconstant=96485C/mol E 0 = Volts = Work(J)/Charge(C) The relation between standard cell potential and equilibrium constant is as follows. lnK = nE 0 0 .0257 at 298K The relation between solubility product K sp and equilibrium constant is as follows. K sp = e +lnK
The E 0 for the following reaction has to be determined. Ag 2 CrO 4 (s) + 2e - → 2Ag(s) + CrO 4 2- (aq) Concept introduction: According to the first law of thermodynamics , the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system. The equation is as follows. ΔU = Q - W ΔU = Change in internal energy Q = Heat added to the system W=Work done by the system In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell. ΔG 0 = -nFE 0 n = Number of moles transferred per mole of reactant and products F = Faradayconstant=96485C/mol E 0 = Volts = Work(J)/Charge(C) The relation between standard cell potential and equilibrium constant is as follows. lnK = nE 0 0 .0257 at 298K The relation between solubility product K sp and equilibrium constant is as follows. K sp = e +lnK
Solution Summary: The author explains that the change in internal energy of a system is equal ti the heat added to the system minus the work done by the system. The relation between standard cell potential and equilibrium constant is as
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Chapter 19, Problem 66GQ
Interpretation Introduction
Interpretation:
The E0 for the following reaction has to be determined.
Ag2CrO4(s) + 2e-→2Ag(s) + CrO42-(aq)
Concept introduction:
According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.
The equation is as follows.
ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system
In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.
ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol E0= Volts = Work(J)/Charge(C)
The relation between standard cell potential and equilibrium constant is as follows.
lnK = nE00.0257 at 298K
The relation between solubility product Ksp and equilibrium constant is as follows.
What is the missing reactant in this organic reaction?
OH
H
+ R
Δ
CH3-CH2-CH-CH3
O
CH3
CH3-CH2-C-O-CH-CH2-CH3 + H2O
Specifically, in the drawing area below draw the condensed structure of R.
If there is more than one reasonable answer, you can draw any one of them. If there is no reasonable answer, check the No answe
box under the drawing area.
Explanation
Check
Click anywhere to draw the first
atom of your structure.
C
O2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Cer
Predict the product of this organic reaction:
CH3
NH2
Δ
CH3-CH-CH3 + HO-C-CH2-N-CH3
P+H₂O
Specifically, in the drawing area below draw the condensed structure of P.
If there is no reasonable possibility for P, check the No answer box under the drawing area.
Explanation
Check
Click anywhere to draw the first
atom of your structure.
X
In the scope of the SCH4U course, please thoroughly go through the second question
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell