![Universe](https://www.bartleby.com/isbn_cover_images/9781319039448/9781319039448_smallCoverImage.jpg)
Concept explainers
(a)
The average speed of a hydrogen atom having mass =
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 47Q
Solution:
Explanation of Solution
Given data:
For present-day Sun,
Mass of hydrogen atom is
Formula used:
Write the expression for the average speed for a gas atom or molecule.
Here,
Explanation:
Recall the equation for the average speed.
Substitute
Conclusion:
Therefore, the average speed of the hydrogen atom is
(b)
The average speed of a hydrogen atom having mass =
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 47Q
Solution:
Explanation of Solution
Given data:
For
Mass of hydrogen atom is
Formula used:
Write the expression for the average speed for a gas atom or molecule.
Here,
Explanation:
Recall the equation for the average speed.
Substitute
Conclusion:
Therefore, the average speed of the hydrogen atom in the atmosphere of the red giant is
(c)
The extent to which the present day Sun and a
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 47Q
Solution: In both cases, the value of the escape speed is higher than the average speed of the atoms but is close in the case of a red giant. Therefore, one can say that for speed above the average speed, hydrogen will leave the red giant.
Explanation of Solution
Introduction:
The escape velocity is the minimum velocity required to escape the gravitational attraction of a planet or star.
Explanation:
Calculate the escape velocity for both cases.
For present-day Sun,
Write the expression for the escape speed.
Here,
Recall the equation for the escape speed.
Substitute
Calculate the escape speed for the red giant;
Recall the equation for the escape speed.
Substitute
The escape velocity for present-day Sun is
Conclusion:
Hence, both the Sun and the red giant will retain hydrogen in their cores but the red giant is more likely to lose that hydrogen as compared to the Sun.
Want to see more full solutions like this?
Chapter 19 Solutions
Universe
- Figure 8.14 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1) at which the small object can emerge after colliding elastically with the cube. How does 1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.arrow_forward2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, 0, y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forwardDraw a phase portrait for an oscillating, damped spring.arrow_forward
- A person is running a temperature of 41.0°C. What is the equivalent temperature on the Fahrenheit scale? (Enter your answer to at least three significant figures.) °Farrow_forwardWhat is the period of a rock of mass 2.0kg tied to the end of a spring 0.625m long string that hangs in a doorway and has an elastic constant of 40N/m?arrow_forwardGive an example of friction speeding up an object.arrow_forward
- Which is the higher temperature? (Assume temperatures to be exact numbers.) (a) 272°C or 272°F? 272°C 272°F They are the same temperature. (b) 200°C or 368°F? 200°C 368°F They are the same temperature.arrow_forwardWhat is the direction of a force vector given by ~v = −6Nˆi − 8Nˆj?arrow_forwardWhat can be said of the position vector of an object far from any influences on its motion?arrow_forward
- ་ Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of acceleration vector a when the object is at position 2?arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305120785/9781305120785_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399920/9781337399920_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168284/9781938168284_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399944/9781337399944_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)