COLLEGE PHYSICS, VOL. 1-W/ACCESS
4th Edition
ISBN: 9780134899978
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 47P
To determine
The distance between the deepest red and deepest violet light which dispersed from white light, and which is closer to point P.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b) Determine the total force (magnitude and direction) on one of the electrons from the other three?
Portfolio Problem 3. A ball is thrown vertically upwards with a speed vo
from the floor of a room of height h. It hits the ceiling and then returns to the
floor, from which it rebounds, managing just to hit the ceiling a second time.
Assume that the coefficient of restitution between the ball and the floor, e, is
equal to that between the ball and the ceiling. Compute e.
Portfolio Problem 4. Consider two identical springs, each with natural length
and spring constant k, attached to a horizontal frame at distance 2l apart. Their
free ends are attached to the same particle of mass m, which is hanging under
gravity. Let z denote the vertical displacement of the particle from the hori-
zontal frame, so that z < 0 when the particle is below the frame, as shown in
the figure. The particle has zero horizontal velocity, so that the motion is one
dimensional along z.
000000
0
eeeeee
(a) Show that the total force acting on the particle is
X
F-mg k-2kz 1
(1.
l
k.
(b) Find the potential energy U(x, y, z) of the system such that U
x = : 0.
= O when
(c) The particle is pulled down until the springs are each of length 3l, and then
released. Find the velocity of the particle when it crosses z = 0.
Chapter 19 Solutions
COLLEGE PHYSICS, VOL. 1-W/ACCESS
Ch. 19 - On a sunny summer day, with the sun overhead, you...Ch. 19 - Suppose you have two pinhole cameras. The first...Ch. 19 - A photographer focuses his camera on his subject....Ch. 19 - The object for a magnifier is usually placed very...Ch. 19 - A nature photographer taking a close-up shot of an...Ch. 19 - The CCD detector in a certain camera has a width...Ch. 19 - All humans have what is known as a blind spot,...Ch. 19 - Suppose you wanted special glasses designed to...Ch. 19 - You have lenses with the following focal lengths:...Ch. 19 - A friend lends you the eyepiece of his microscope...
Ch. 19 - A student makes a microscope using an objective...Ch. 19 - Prob. 17CQCh. 19 - Prob. 18CQCh. 19 - A microscope has a tube length of 20 cm. What...Ch. 19 - The distance between the objective and eyepiece of...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A 60-year-old man has a near point of 100 cm,...Ch. 19 - Prob. 25MCQCh. 19 - Prob. 26MCQCh. 19 - An amateur astronomer looks at the moon through a...Ch. 19 - Prob. 1PCh. 19 - A student has built a 20-cm-long pinhole camera...Ch. 19 - A pinhole camera is made from an 80-cm-long box...Ch. 19 - Prob. 4PCh. 19 - A photographer uses his camera, whose lens has a...Ch. 19 - Prob. 6PCh. 19 - An older camera has a lens with a focal length of...Ch. 19 - Prob. 8PCh. 19 - In Figure P19.6 the camera lens has a 50 mm focal...Ch. 19 - Prob. 10PCh. 19 - Prob. 11PCh. 19 - Prob. 12PCh. 19 - Prob. 14PCh. 19 - Prob. 16PCh. 19 - A farsighted person has a near point of 50 cm...Ch. 19 - Prob. 18PCh. 19 - A nearsighted woman has a far point of 300 cm....Ch. 19 - Prob. 20PCh. 19 - Martin has severe myopia, with a far point of only...Ch. 19 - Prob. 22PCh. 19 - Rank the following people from the most...Ch. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Prob. 28PCh. 19 - The diameter of a penny is 19 mm. How far from...Ch. 19 - Prob. 30PCh. 19 - A magnifier has a magnification of 5. How far from...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - A forensic scientist is using a standard...Ch. 19 - A microscope with an 8.0-mm-focal-length objective...Ch. 19 - Prob. 37PCh. 19 - Prob. 38PCh. 19 - For the combination of two identical lenses shown...Ch. 19 - For the combination of two lenses shown in Figure...Ch. 19 - A researcher is trying to shoot a tranquilizer...Ch. 19 - The objective lens of the refracting telescope at...Ch. 19 - You use your 8 binoculars to focus on a...Ch. 19 - Prob. 44PCh. 19 - A narrow beam of light with wavelengths from 450...Ch. 19 - Prob. 47PCh. 19 - A ray of red light, for which n = 1.54, and a ray...Ch. 19 - Two lightbulbs are 1.0 m apart. From what distance...Ch. 19 - A 1.0-cm-diameter microscope objective has a focal...Ch. 19 - A microscope with an objective of focal length 1.6...Ch. 19 - Jason uses a lens with a focal length of 10.0 cm...Ch. 19 - A magnifier is labeled 5. What would its...Ch. 19 - A 20 microscope objective is designed for use in...Ch. 19 - Two converging lenses with focal lengths of 40 cm...Ch. 19 - A converging lens with a focal length of 40 cm and...Ch. 19 - A lens with a focal length of 25 cm is placed 40...Ch. 19 - A microscope with a 5 objective lens images a...Ch. 19 - Prob. 62GPCh. 19 - The objective lens and the eyepiece lens of a...Ch. 19 - Your telescope has an objective lens with a focal...Ch. 19 - Martha is viewing a distant mountain with a...Ch. 19 - Susan is quite nearsighted; without her glasses,...Ch. 19 - A spy satellite uses a telescope with a...Ch. 19 - Two stars have an angular separation of 3.3 105...Ch. 19 - Frank is nearsighted and his glasses require a...Ch. 19 - What is the angular resolution of the Hubble Space...Ch. 19 - The Hubble Space Telescope has a mirror diameter...Ch. 19 - Once dark adapted, the pupil of your eye is...Ch. 19 - The normal human eye has maximum visual acuity...Ch. 19 - Prob. 75GPCh. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...
Knowledge Booster
Similar questions
- In the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page. R Pout (a) Calculate the maximum value of the emf induced between the ends of the conductor. 1.77 v (b) What is the value of the average induced emf for each complete rotation? 0 v (c) How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? (Select all that apply.) The value in part (a) would increase. The value in part (a) would remain the same. The value in part (a) would decrease. The value in part (b) would increase. The value in part (b) would remain the same. The value in part (b) would decrease. × (d) Sketch the emf versus time when the field is as drawn in the figure. Choose File No file chosen This answer has not been graded yet. (e) Sketch the emf…arrow_forwardPortfolio Problem 2. A particle of mass m slides in a straight line (say along i) on a surface, with initial position x ©0 and initial velocity Vo > 0 at t = 0. The = particle is subject to a constant force F = -mai, with a > 0. While sliding on the surface, the particle is also subject to a friction force v Ff = -m fo = −m fov, with fo > 0, i.e., the friction force has constant magnitude mfo and is always opposed to the motion. We also assume fo 0, and solve it to find v(t) and x(t). How long does it take for the particle to come to a stop? How far does it travel? (b) After coming to a stop, the particle starts sliding backwards with negative velocity. Write the equation of motion in this case, and solve it to find the time at which the particle returns to the original position, x = 0. Show that the final speed at x 0 is smaller than Vo. = Express all your answers in terms of a, fo and Vo.arrow_forward= Portfolio Problem 1. A particle of mass m is dropped (i.e., falls down with zero initial velocity) at time t 0 from height h. If the particle is subject to gravitational acceleration only, i.e., a = −gk, determine its speed as it hits the ground by solving explicitly the expressions for its velocity and position. Next, verify your result using dimensional analysis, assuming that the general relation is of the form v = khag³m, where k is a dimensionless constant.arrow_forward
- Review Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow- green fringe? m = 3 m = 3 m= 0 m = 3 m = 3 Fringes on observation screenarrow_forwardIn the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page. In this illustration, a wire extends straight to the right from point A, then curves up and around in a semicircle of radius R. On the right side of the semicircle, the wire continues straight to the right to point C. The wire lies in the plane of the page, in a region of no magnetic field. Directly below the axis A C is a region of uniform magnetic field pointing out of the page, vector Bout. If viewed from the right, the wire can rotate counterclockwise, so that the semicircular part can rotate into the region of magnetic field. (a) Calculate the maximum value of the emf induced between the ends of the conductor. V(b) What is the value of the average induced emf for each complete rotation? Consider carefully whether the correct answer is…arrow_forwardA coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.20 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 6.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =arrow_forward
- A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 1.80 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 5.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =arrow_forwardWhich vowel does this graph represent (”ah,” “ee,” or “oo”)? How can you tell? Also, how would you be able to tell for the other vowels?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forward
- A bat is flying toward a cave wall at 27.0 m/s. What is the frequency of the reflected sound that it hears, assuming it emits sound at 52.0 kHz? The speed of sound is 341.5 m/s. Multiple Choice о 60.9 kHz О 56.5 kHz о 61.3 kHz О 56.1 kHzarrow_forwardCompare the slope of your Data Table 2 graph to the average wavelength (Ave, l) from Data Table 2 by calculating the % Difference. Is the % Difference calculated for the wavelength in Data Table 2 within an acceptable % error? Explain why or why not?arrow_forwardThe slope of a graph of velocity, v, vs frequency, f, is equal to wavelength, l. Compare the slope of your Data Table 1 graph to the average wavelength (Ave, l) from Data Table 1 by calculating the % Difference.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON