STARTING OUT WITH C++ MPL
9th Edition
ISBN: 9780136673989
Author: GADDIS
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 3PC
Program Plan Intro
Leaf Counter
Program Plan:
Main.cpp:
- Include required header files.
- Inside the “main ()” function,
- Display the number of leaf nodes by calling the function “num_LeafNodes ()”.
- Insert nodes into the binary tree by using the function “insert_Node ()”.
- Display those nodes by using the function “display_InOrder ()”.
- Now, display the number of leaf nodes by calling the function “num_LeafNodes ()”.
- Delete two nodes from the binary tree by using the function “remove ()”.
- Display remaining nodes by using the function “display_InOrder ()”.
- Finally, display the number of leaf nodes by calling the function “num_LeafNodes ()”.
BinaryTree.h:
- Include required header files.
- Create a class template.
- Declare a class named “BinaryTree”. Inside the class,
- Inside the “private” access specifier,
- Give the structure declaration for the creation of node.
- Create an object for the template.
- Create two pointers named “left_Node” and “right_Node” to access the value left and right nodes respectively.
- Declare a variable “leafCount”.
- Create a pointer named “root” to access the value of root node.
- Give function declaration for “insert ()”, “destroy_SubTree ()”, “delete_Node ()”, “make_Deletion ()”, “display_InOrder ()”, “display_PreOrder ()”, “display_PostOrder ()”, “count_Nodes ()”, “count_Leaves ()”.
- Give the structure declaration for the creation of node.
- Inside “public” access specifier,
- Give the definition for constructor and destructor.
- Give function declaration.
- Inside the “private” access specifier,
- Declare template class.
- Give function definition for “insert ()”.
- Check if “nodePtr” is null.
- If the condition is true then, insert node.
- Check if value of new node is less than the value of node pointer
- If the condition is true then, Insert node to the left branch by calling the function “insert ()” recursively.
- Else
- Insert node to the right branch by calling the function “insert ()” recursively.
- Check if “nodePtr” is null.
- Declare template class.
- Give function definition for “insert_Node ()”.
- Create a pointer for new node.
- Assign the value to the new node.
- Make left and right node as null
- Call the function “insert ()” by passing parameters “root” and “newNode”.
- Declare template class.
- Give function definition for “destroy_SubTree ()”.
- Check if the node pointer points to left node
- Call the function recursively to delete the left sub tree.
- Check if the node pointer points to the right node
- Call the function recursively to delete the right sub tree.
- Delete the node pointer.
- Check if the node pointer points to left node
- Declare template class.
- Give function definition for “search_Node ()”.
- Assign false to the Boolean variable “status”.
- Assign root pointer to the “nodePtr”.
- Do until “nodePtr” exists.
- Check if the value of node pointer is equal to “num”.
- Assign true to the Boolean variable “status”
- Check if the number is less than the value of node pointer.
- Assign left node pointer to the node pointer.
- Else
- Assign right node pointer to the node pointer.
- Check if the value of node pointer is equal to “num”.
- Return the Boolean variable.
- Declare template class.
- Give function definition for “remove ()”.
- Call the function “delete_Node ()”
- Declare template class.
- Give function definition for “delete_Node ()”
- Check if the number is less than the node pointer value.
- Call the function “delete_Node ()” recursively.
- Check if the number is greater than the node pointer value.
- Call the function “delete_Node ()” recursively.
- Else,
- Call the function “make_Deletion ()”.
- Check if the number is less than the node pointer value.
- Declare template class.
- Give function definition for “make_Deletion ()”
- Create pointer named “tempPtr”.
- Check if the nodePtr is null.
- If the condition is true then, print “Cannot delete empty node.”
- Check if right node pointer is null.
- If the condition is true then,
- Make the node pointer as the temporary pointer.
- Reattach the left node child.
- Delete temporary pointer.
- If the condition is true then,
- Check is left node pointer is null
- If the condition is true then,
- Make the node pointer as the temporary pointer.
- Reattach the right node child.
- Delete temporary pointer.
- If the condition is true then,
- Else,
- Move right node to temporary pointer
- Reach to the end of left-Node using “while” condition.
- Assign left node pointer to temporary pointer.
- Reattach left node sub tree.
- Make node pointer as the temporary pointer.
- Reattach right node sub tree
- Delete temporary pointer.
- Declare template class.
- Give function definition for “display_InOrder ()”.
- Check if the node pointer exists.
- Call the function “display_InOrder ()” recursively.
- Print the value
- Call the function “display_InOrder ()” recursively.
- Check if the node pointer exists.
- Declare template class.
- Give function definition for “display_PreOrder ()”.
- Print the value.
- Call the function “display_PreOrder ()” recursively.
- Call the function “display_PreOrder ()” recursively.
- Declare template class.
- Give function definition for “display_PostOrder ()”.
- Call the function “display_PostOrder ()” recursively.
- Call the function “display_PostOrder ()” recursively.
- Print value
- Declare template class.
- Give function definition for “numNodes ()”.
- Call the function “count_Nodes ()”.
- Declare template class.
- Give function definition for “count_Nodes ()”.
- Declare a variable named “count”.
- Check if the node pointer is null
- Assign 0 to count.
- Else,
- Call the function “count_Nodes ()” recursively.
- Return the variable “count”.
- Declare template class.
- Give function definition for “num_LeafNodes()”.
- Assign 0 to “leafCount”
- Call the function “count_Leaves ()”
- Return the variable.
- Declare template class.
- Give function definition for “count_Leaves()”.
- Call the function “count_Leaves ()” recursively by passing left node pointer as the parameter.
- Call the function “count_Leaves ()” recursively by passing right node pointer as the parameter.
- Check if left and right node pointers are null.
- Increment the variable “leafCount”.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Pllleasassseee ssiiirrrr soolveee thissssss questionnnnnnn
Pllleasassseee ssiiirrrr soolveee thissssss questionnnnnnn
Pllleasassseee ssiiirrrr soolveee thissssss questionnnnnnn
Chapter 19 Solutions
STARTING OUT WITH C++ MPL
Ch. 19.1 - Prob. 19.1CPCh. 19.1 - Prob. 19.2CPCh. 19.1 - Prob. 19.3CPCh. 19.1 - Prob. 19.4CPCh. 19.1 - Prob. 19.5CPCh. 19.1 - Prob. 19.6CPCh. 19.2 - Prob. 19.7CPCh. 19.2 - Prob. 19.8CPCh. 19.2 - Prob. 19.9CPCh. 19.2 - Prob. 19.10CP
Ch. 19.2 - Prob. 19.11CPCh. 19.2 - Prob. 19.12CPCh. 19 - Prob. 1RQECh. 19 - Prob. 2RQECh. 19 - Prob. 3RQECh. 19 - Prob. 4RQECh. 19 - Prob. 5RQECh. 19 - Prob. 6RQECh. 19 - Prob. 7RQECh. 19 - Prob. 8RQECh. 19 - Prob. 9RQECh. 19 - Prob. 10RQECh. 19 - Prob. 11RQECh. 19 - Prob. 12RQECh. 19 - Prob. 13RQECh. 19 - Prob. 14RQECh. 19 - Prob. 15RQECh. 19 - Prob. 16RQECh. 19 - Prob. 17RQECh. 19 - Prob. 18RQECh. 19 - Prob. 19RQECh. 19 - Prob. 20RQECh. 19 - Prob. 1PCCh. 19 - Prob. 2PCCh. 19 - Prob. 3PCCh. 19 - Prob. 4PCCh. 19 - Prob. 5PCCh. 19 - Prob. 6PCCh. 19 - Prob. 7PCCh. 19 - Prob. 8PCCh. 19 - Prob. 9PCCh. 19 - Prob. 10PC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Pllleasassseee ssiiirrrr soolveee thissssss questionnnnnnnarrow_forward4. def modify_data(x, my_list): X = X + 1 my_list.append(x) print(f"Inside the function: x = {x}, my_list = {my_list}") num = 5 numbers = [1, 2, 3] modify_data(num, numbers) print(f"Outside the function: num = {num}, my_list = {numbers}") Classe Classe that lin Thus, A pro is ref inter Ever dict The The output: Inside the function:? Outside the function:?arrow_forwardpython Tasks 5 • Task 1: Building a Library Management system. Write a Book class and a function to filter books by publication year. • Task 2: Create a Person class with name and age attributes, and calculate the average age of a list of people Task 3: Building a Movie Collection system. Each movie has a title, a genre, and a rating. Write a function to filter movies based on a minimum rating. ⚫ Task 4: Find Young Animals. Create an Animal class with name, species, and age attributes, and track the animals' ages to know which ones are still young. • Task 5(homework): In a store's inventory system, you want to apply discounts to products and filter those with prices above a specified amount. 27/04/1446arrow_forward
- Of the five primary components of an information system (hardware, software, data, people, process), which do you think is the most important to the success of a business organization? Part A - Define each primary component of the information system. Part B - Include your perspective on why your selection is most important. Part C - Provide an example from your personal experience to support your answer.arrow_forwardManagement Information Systemsarrow_forwardQ2/find the transfer function C/R for the system shown in the figure Re དarrow_forward
- Please original work select a topic related to architectures or infrastructures (Data Lakehouse Architecture). Discussing how you would implement your chosen topic in a data warehouse project Please cite in text references and add weblinksarrow_forwardPlease original work What topic would be related to architectures or infrastructures. How you would implement your chosen topic in a data warehouse project. Please cite in text references and add weblinksarrow_forwardWhat is cloud computing and why do we use it? Give one of your friends with your answer.arrow_forward
- What are triggers and how do you invoke them on demand? Give one reference with your answer.arrow_forwardDiscuss with appropriate examples the types of relationships in a database. Give one reference with your answer.arrow_forwardDetermine the velocity error constant (k,) for the system shown. + R(s)- K G(s) where: K=1.6 A(s+B) G(s) = as²+bs C(s) where: A 14, B =3, a =6. and b =10arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education