
Foundations of Astronomy, Enhanced
13th Edition
ISBN: 9781305980686
Author: Michael A. Seeds; Dana Backman
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 2P
Venus can be as bright as apparent magnitude −4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 1 pc? What would its apparent magnitude be? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law, Section 9-2a; also, review the definition of apparent visual magnitudes, Chapter 2.) (Note: 1 pc = 2.1 × 105 AU.)
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
PROBLEM 2
A cube of mass m is placed in a rotating funnel.
(The funnel is rotating around the vertical axis shown
in the diagram.) There is no friction between the cube
and the funnel but the funnel is rotating at just the
right speed needed to keep the cube rotating with the
funnel. The cube travels in a circular path of radius r,
and the angle between the vertical and the wall of the
funnel is 0. Express your answers to parts (b) and (c)
in terms of m, r, g, and/or 0.
(a) Sketch a free-body diagram for the cube. Show
all the forces acting on it, and show the appropriate
coordinate system to use for this problem.
(b) What is the normal force acting on the cube?
FN=mg58
(c) What is the speed v of the cube?
(d) If the speed of the cube is different from what you
determined in part (c), a force of friction is necessary
to keep the cube from slipping in the funnel. If the
funnel is rotating slower than it was above, draw a
new free-body diagram for the cube to show which
way friction…
Circular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present.
Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn.
tan(θ) =
The character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?
Chapter 19 Solutions
Foundations of Astronomy, Enhanced
Ch. 19 - Why is the solar nebula theory considered a theory...Ch. 19 - Why was the nebular hypothesis never fully...Ch. 19 - What produced the helium now present in the Suns...Ch. 19 - What produced the iron and heavier elements such...Ch. 19 - Prob. 5RQCh. 19 - What evidence can you give that disks of gas and...Ch. 19 - According to the solar nebula theory, why is...Ch. 19 - Prob. 8RQCh. 19 - Prob. 9RQCh. 19 - Why does the solar nebula theory predict that...
Ch. 19 - What evidence can you give that the Solar System...Ch. 19 - Prob. 12RQCh. 19 - Prob. 13RQCh. 19 - Prob. 14RQCh. 19 - Prob. 15RQCh. 19 - Prob. 16RQCh. 19 - Prob. 17RQCh. 19 - Prob. 18RQCh. 19 - Prob. 19RQCh. 19 - Prob. 20RQCh. 19 - Prob. 21RQCh. 19 - What planet in the Solar System is larger than the...Ch. 19 - Why is almost every solid surface in the Solar...Ch. 19 - Prob. 24RQCh. 19 - Prob. 25RQCh. 19 - Prob. 26RQCh. 19 - What is the difference between condensation and...Ch. 19 - Why dont Terrestrial planets have ring systems...Ch. 19 - How does the solar nebula theory help you...Ch. 19 - Prob. 30RQCh. 19 - If rocks obtained from the Moon indicate an age of...Ch. 19 - Which is older, the Moon or the Sun? How do you...Ch. 19 - How does the solar nebula theory explain the...Ch. 19 - Did hydrogen gas condense from the nebula as the...Ch. 19 - Prob. 35RQCh. 19 - What happens if a planet has differentiated? Would...Ch. 19 - Order the following steps in the formation of a...Ch. 19 - Which step(s) listed in the previous question can...Ch. 19 - Describe two processes that could melt the...Ch. 19 - What is the evidence that Jupiter and Saturn are...Ch. 19 - Describe two processes that cleared the solar...Ch. 19 - What is the difference between a planetesimal and...Ch. 19 - Does Uranus have enough mass to have formed by...Ch. 19 - What properties of the gas and dust disks observed...Ch. 19 - Why would the astronomically short lifetime of gas...Ch. 19 - Prob. 46RQCh. 19 - Prob. 47RQCh. 19 - Describe three methods to find extrasolar planets.Ch. 19 - Why is the existence of hot Jupiters puzzling?...Ch. 19 - Prob. 50RQCh. 19 - The evidence is overwhelming that the Grand Canyon...Ch. 19 - Prob. 52RQCh. 19 - Prob. 1DQCh. 19 - Prob. 2DQCh. 19 - Prob. 3DQCh. 19 - Prob. 4DQCh. 19 - Prob. 5DQCh. 19 - Prob. 6DQCh. 19 - If you observed the Solar System from the vantage...Ch. 19 - Venus can be as bright as apparent magnitude 4.7...Ch. 19 - What is the smallest-diameter crater you can...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - You analyze a sample of a meteorite that landed on...Ch. 19 - You analyze a sample of a meteorite that landed on...Ch. 19 - Prob. 8PCh. 19 - Examine Table 18-2. What might a planets...Ch. 19 - Examine Table 18-2. What might a planets...Ch. 19 - Suppose that Earth grew to its present size in 10...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - What do you see in this image that indicates this...Ch. 19 - Why do astronomers conclude that the surface of...Ch. 19 - Prob. 3LTLCh. 19 - Prob. 4LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forwardNo chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forward
- A charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forwarda) What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless. T = b) If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg? mm =arrow_forwardCurve Fitter CURVE FITTER Open Update Fit Save New Exclusion Rules Select Validation Data Polynomial Exponential Logarithmic Auto Fourier Fit Fit Duplicate Data Manual FILE DATA FIT TYPE FIT Harmonic Motion X us 0.45 mi ce 0.4 0.35 0.3 0.25 0.2 Residuals Plot Contour Plot Plot Prediction Bounds None VISUALIZATION Colormap Export PREFERENCES EXPORT Fit Options COA Fourier Equation Fit Plot x vs. t -Harmonic Motion a0+ a1*cos(x*w) + b1*sin(x*w) Number of terms Center and scale 1 ▸ Advanced Options Read about fit options Results Value Lower Upper 0.15 a0 0.1586 0.1551 0.1620 a1 0.0163 0.0115 0.0211 0.1 b1 0.0011 -0.0093 0.0115 W 1.0473 0.9880 1.1066 2 8 10 t 12 14 16 18 20 Goodness of Fit Value Table of Fits SSE 0.2671 Fit State Fit name Data Harmonic Motion x vs. t Fit type fourier1 R-square 0.13345 SSE DFE 0.26712 296 Adj R-sq 0.12467 RMSE 0.030041 # Coeff Valic R-square 0.1335 4 DFE 296.0000 Adj R-sq 0.1247 RMSE 0.0300arrow_forward
- What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?arrow_forwardLet's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forwardi need step by step clear answers with the free body diagram clearlyarrow_forward
- No chatgpt pls will upvotearrow_forwardReview the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forwardPlease solve and answer the problem step by step with explanations along side each step stating what's been done correctly please. Thank you!! ( preferably type out everything)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning


Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning


An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY