(a)
Interpretation:
Energy possessed by a mole of photon should be calculated and expressed with the units of kilojoules and kilocalories.
Concept introduction:
A photon can be introduced as a piece of energy which has no mass. The relationship between the energy of a photon and its wavelength can be expressed with the following Planck-Einstein equation represented as follows:

Answer to Problem 23P
Explanation of Solution
A photon can be introduced as a piece of energy which has no mass. The speed of a photon is equal to the
Here,
Since, the frequency of the photon is not given, the equation of
Using
Substituting
=
Since,
Energy of a photon in kilojoules,
Since,
Number of photons in a mole = Avogadro number of photons
Therefore, energy of mole of photon in kiloJoules,
Energy of a photon in kilojoules
Energy of a photon in kilocalories,
Number of photons in a mole = Avogadro number of photons
Therefore, Energy of moles of photon in kilocalories,
Einstein is also a unit of energy.
Einstein
Thus, energy of mole of photon in kilo Joules =
Energy of moles of photon in kilocalories =
(b)
Interpretation:
The maximum increase in the redox potential induced by 1000 nm photon needs to be determined.
Concept introduction:
One electron volt is the energy need to move an electron between one-volt potential difference.
One electron volt

Answer to Problem 23P
Explanation of Solution
The maximum increase in a redox potential can be calculated as follows:
Putting the values,
(c)
Interpretation:
Number of photons need to overcome the Gibbs free energy should be calculated.
Concept introduction:
In a simple definition, Gibbs free energy of a reaction is the energy associated with that particular
Phosphorylation is the conversion of ATP from ADP.

Answer to Problem 23P
Explanation of Solution
Phosphorylation is the conversion of ATP from ADP.
ATP- Adenosine triphosphate
ADP-Adenosine diphosphate
Therefore,
Energy needed for the phosphorylation reaction = Energy needed to convert a mole of ADP to ATP =
Number of ADP in one mole of ADP =
Energy needed to convert one ADP to ATP,
=
Maximum energy that one
Minimum number of
Putting the values,
Want to see more full solutions like this?
Chapter 19 Solutions
BIOCHEMISTRY W/1 TERM ACHEIVE ACCESS
- In a diffraction experiment of a native crystal, intensity of reflection (-1 0 6) is equivalent to the intensity of reflection (1 0 -6). true or false?arrow_forwardin an x-ray diffraction experiment, moving the detector farther away from the crystal will allow collection of reflection of reflections with high Miller indices. true or false?arrow_forwardShow the mechanism for the acid-catalyzed formation of an [α-1,6] glycosidic linkagebetween two molecules of α-D-glucopyranose.arrow_forward
- Label the following polysaccharide derivatives as reducing or nonreducing. a. C. b. HO CH₂OH CH2OH OH OH OH OH OH HOCH₂ OH OH OH HOCH₂ HO HO HO OH OH ΙΟ CH₂OH OH OH "OH OHarrow_forwardFor a red blood cell (erythrocyte) undergoing active glycolysis, briefly explain how increases in concentration of the following factors are likely to affect glycolytic flux. a. ATP b. AMP c. F-1,6-BP d. F-2,6-BP e. Citrate f. Glucose-6-phosphatearrow_forwardThe ∆G°’ for hydrolysis of phosphoenol pyruvate is -62.2 kJ/mol. The standard freeenergy of ATP hydrolysis is -30.5 kJ/mol. A. What is the standard free energy and K eq of the spontaneous reaction betweenADP/ATP and phosphoenol pyruvate. B. Repeat A for F-1,6-BP (∆G°’=-16.7 kJ/mol) and 1,3-BPG (∆G°’=-49.6 kJ/mol)hydrolysis. C. If the ATP and ADP concentrations are 8mM and 1mM respectively, what would bethe ratio of pyruvate/phosphoenolpyruvate at equilibrium?arrow_forward
- Answerarrow_forward13. Which one is the major organic product of the following sequence of reactions? A OH (CH3)2CHCH2COOH SOCI2 CH3OH 1. CH3MgBr 2. H₂O, H+ B C D OH E OHarrow_forward14. Which one is the major organic product of the following sequence of reactions? (CH3)2CH-COCI CH3OH 1. DIBALH, -78°C 1. PhCH2MgBr ? 2. H2O, HCI 2. H2O, HCI OH OMe A Ph B Ph OH Ph C OMe Ph D E OH .Pharrow_forward
- 6. Which one is the major organic product obtained from the following reaction? CO₂Me 1. LiAlH4 2. H₂O CH₂OH CH₂OCH3 5555 HO A B HO C HO D CH₂OH E ?arrow_forward1. (10 points) Pulverized coal pellets, which may be ° approximated as carbon spheres of radius r = 1 mm, are burned in a pure oxygen atmosphere at 1450 K and 1 atm. Oxygen is transferred to the particle surface by diffusion, where it is consumed in the reaction C + O₂ →> CO₂. The reaction rate is first order and of the form No2 = k₁C₁₂(r), where k₁ = 0.1 m/s. Neglecting changes in r, determine the steady-state O₂ molar consumption rate in kmol/s. At 1450 K, the binary diffusion coefficient for O2 and CO2 is 1.71 x 10ª m²/s.arrow_forward2. (20 points) Consider combustion of hydrogen gas in a mixture of hydrogen and oxygen adjacent to the metal wall of a combustion chamber. Combustion occurs at constant temperature and pressure according to the chemical reaction 2H₂+ O₂→ 2H₂O. Measurements under steady-state conditions at 10 mm from the wall indicate that the molar concentrations of hydrogen, oxygen, and water vapor are 0.10, 0.10, and 0.20 kmol/m³, respectively. The generation rate of water vapor is 0.96x102 kmol/m³s throughout the region of interest. The binary diffusion coefficient for each of the species (H, O̟, and H₂O) in the remaining species is 0.6 X 10-5 m²/s. (a) Determine an expression for and make a qualitative plot of C as a function of distance from the wall. H2 (b) Determine the value of C2 at the wall. H2 (c) On the same coordinates used in part (a), sketch curves for the concentrations of oxygen and water vapor. This will require you to calculate Co, and C. 02 H20 (d) What is the molar flux of water…arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning

