
Physics
3rd Edition
ISBN: 9781259233616
Author: GIAMBATTISTA
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 23CQ
To determine
The direction at which the beam moves.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem Six. A 70 kg student in the figure balances a 1200 kg elephant
on a hydraulic lift with diameter 2.0 m that is filled with oil which has a
density of 900 kg/m³. How many 80 kg students would have to stand on
the first piston in order to raise the elephant by 2.55 m?
80 kg
1200 kg
17.)
(A) 5
(D) 8
(B) 6
(E) 9
(C) 7
Oil
2.0 m
5
In the accompanying figure, the rails, connecting end pieces, and rod all have a resistance per unit length
of 4.52/cm. The rod moves to the left at v = 5 m/s. If B = 0.3 T everywhere in the region, what is
the current in the circuit (a) when a = 6.5 cm? (b) when a = 4 cm?
Problem Twelve. An object consists of four
particles: m₁ =1.0kg, m₂ = 2.0kg, m3 = 3.0kg,
ma = 4.0kg. They are connected by rigid
massless rods to form a rectangle of edge lengths
2a and 2b, where a 7.0 m and b = 8.0 m. The
system rotates about the x-axis through the center
as shown.
=
Find the (x, y) coordinate of the center of
gravity of the object (in meters). Use the
geometrical center of the object as the
origin.
2a
13
2b
m
M2
Axis of rotation
20.) (A) (-3.2, -1.4) (B) (-3.2, 1.4)
(C) (5.2, -1.4)
(D) (-1.8,-1.4)
(E) (3.2,-5.2)
Find the moment of inertia of the object about the x-axis and y-axis that run through the geometrical
center of the object. Give an answer as (Ix, ly, I) in units of 10² kg-m².
21.) (A) (6.4, 4.9, 11)
(D) (9.8, 11, 12.8)
(B) (4.9, 6.4, 11)
(C) (11, 12.8, 9.8)
(E) (2.5, 10, 11)
anul babogaus al bos ano
002
maldor
If the object is spinning with angular velocity of 30 rpm around the axis of rotation shown in the
diagram, find the rotational kinetic energy. Give…
Chapter 19 Solutions
Physics
Ch. 19.2 - 19.2
An electron is moving with speed v in a...Ch. 19.2 - 19.1 Acceleration of Cosmic Ray Particle
If v =...Ch. 19.2 - 19.2 Magnetic Force on an Electron
Find the...Ch. 19.2 - Practice Problem 19.3 Velocity Component Parallel...Ch. 19.3 - 19.4 Ion Speed
The magnetic field used in the mass...Ch. 19.3 - 19.5 Increasing Kinetic Energy in a Proton...Ch. 19.4 - 19.4
A particle’s helical motion is shown in Fig....Ch. 19.5 - 19.5 (a) , points east, and q is negative, so ...Ch. 19.5 - Practice Problem 19.6 Deflection of a Particle...Ch. 19.5 - Prob. 19.7PP
Ch. 19.6 - 19.6
Suppose the magnetic field in Fig. 19.28 were...Ch. 19.6 - 19.8 Magnetic Force on a Current-Carrying Wire
A...Ch. 19.7 - CHECKPOINT 19.7
Suppose the coil of wire in Fig....Ch. 19.7 - Practice Problem 19.9 Torque on a Coil
Starting...Ch. 19.8 - 19.8
What is the direction of the magnetic field...Ch. 19.8 - 19.10 Field Midway Between Two Wires
Find the...Ch. 19.9 - Prob. 19.11PPCh. 19 - Prob. 1CQCh. 19 - Prob. 2CQCh. 19 - Prob. 3CQCh. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Prob. 6CQCh. 19 - Prob. 7CQCh. 19 - Prob. 8CQCh. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 11CQCh. 19 - Prob. 12CQCh. 19 - Prob. 13CQCh. 19 - Prob. 14CQCh. 19 - Prob. 15CQCh. 19 - Prob. 16CQCh. 19 - Prob. 17CQCh. 19 - Prob. 18CQCh. 19 - Prob. 19CQCh. 19 - Prob. 20CQCh. 19 - Prob. 21CQCh. 19 - Prob. 22CQCh. 19 - Prob. 23CQCh. 19 - Prob. 1MCQCh. 19 - Prob. 2MCQCh. 19 - Multiple-Choice Questions 1-4. In the figure, four...Ch. 19 - Prob. 4MCQCh. 19 - Prob. 5MCQCh. 19 - Prob. 6MCQCh. 19 - Prob. 7MCQCh. 19 - Prob. 8MCQCh. 19 - Multiple-Choice Questions 6-9. A wire carries...Ch. 19 - Prob. 10MCQCh. 19 - 11. The magnetic forces that two parallel wires...Ch. 19 - Prob. 12MCQCh. 19 - 1. At which point in the diagram is the magnetic...Ch. 19 - 2. Draw vector arrows to indicate the direction...Ch. 19 - Problems 3-6. Sketch some magnetic field lines for...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - Problems 3–6. Sketch some magnetic field lines for...Ch. 19 - 7. Find the magnetic force exerted on an electron...Ch. 19 - 8. Find the magnetic force exerted on a proton...Ch. 19 - 9. A uniform magnetic field points north; its...Ch. 19 - 10. A uniform magnetic field points vertically...Ch. 19 - Problems 11-14. Several electrons move at speed...Ch. 19 - 12. Find the magnetic force on the electron at...Ch. 19 - 12. Find the magnetic force on the electron at...Ch. 19 - Problems 11-14. Several electrons move at speed...Ch. 19 - 15. A magnet produces a 0.30 T field between its...Ch. 19 - 16. At a certain point on Earth’s surface in the...Ch. 19 - 17. A cosmic ray muon with the same charge as an...Ch. 19 - 18. In a CRT. electrons moving at 1.8 × 107 m/s...Ch. 19 - 19. A positron (q = +e) moves at 5.0 × 107 m/s in...Ch. 19 - 20. ✦ An electron moves with speed 2.0 × 105 m/s...Ch. 19 - 21. ✦ An electron moves with speed 2.0 × 105 m/s...Ch. 19 - 19.3 Charged Particle Moving Perpendicularly to a...Ch. 19 - 23. Six protons move (at speed v) in magnetic...Ch. 19 - 24. An electron moves at speed 8.0 × 105 m/s in a...Ch. 19 - 25. The magnetic field in a hospital’s cyclotron...Ch. 19 - 26. The magnetic field in a cyclotron used in...Ch. 19 - 27. The magnetic field in a cyclotron used to...Ch. 19 - 28. A beam of α particles (helium nuclei) is used...Ch. 19 - 29. A singly charged ion of unknown mass moves in...Ch. 19 - 30. In one type of mass spectrometer, ions having...Ch. 19 - 31. Natural carbon consists of two different...Ch. 19 - 32. After being accelerated through a potential...Ch. 19 - 33. A sample containing carbon (atomic mass 12 u),...Ch. 19 - Prob. 34PCh. 19 - 35. Show that the time for one revolution of a...Ch. 19 - 36. Crossed electric and magnetic fields are...Ch. 19 - 37. A current I = 40.0 A flows through a strip of...Ch. 19 - 38. In Problem 37, if the width of the strip is...Ch. 19 - 39. In Problem 37, the width of the strip is 3.5...Ch. 19 - 40. The strip in the diagram is used as a Hall...Ch. 19 - 41. A strip of copper 2.0 cm wide carries a...Ch. 19 - Prob. 42PCh. 19 - 43. An electromagnetic flowmeter is used to...Ch. 19 - 44. A charged particle is accelerated from rest...Ch. 19 - 45. A straight wire segment of length 0.60 m...Ch. 19 - 46. A straight wire segment of length 25 cm...Ch. 19 - 47. Parallel conducting tracks, separated by 2.0...Ch. 19 - 48. An electromagnetic rail gun can fire a...Ch. 19 - 49. A straight, stiff wire of length 1.00 m and...Ch. 19 - Prob. 50PCh. 19 - Prob. 51PCh. 19 - Prob. 52PCh. 19 - 53. ✦ A straight wire is aligned east-west in a...Ch. 19 -
54. A straight wire is aligned north-south in a...Ch. 19 - 55. In each of six electric motors, a cylindrical...Ch. 19 -
56. In an electric motor, a circular coil with...Ch. 19 - 57. In an electric motor, a coil with 100 turns of...Ch. 19 - 58. A square loop of wire of side 3.0 cm carries...Ch. 19 - 59. The intrinsic magnetic dipole moment of the...Ch. 19 - 60. In a simple model, the electron in a hydrogen...Ch. 19 - 61. A certain fixed length L of wire carries a...Ch. 19 - 62. Use the following method to show that the...Ch. 19 - 63. A square loop of wire with side 0.60 m carries...Ch. 19 - Prob. 64PCh. 19 -
65. Estimate the magnetic field at distances of...Ch. 19 - Prob. 66PCh. 19 - 67. Kieran measures the magnetic field of an...Ch. 19 -
68. Two wires each carry 10.0 A of current (in...Ch. 19 - Prob. 69PCh. 19 -
70. Point P is midway between two long, straight,...Ch. 19 -
70. Point P is midway between two long, straight,...Ch. 19 - Prob. 72PCh. 19 - Prob. 73PCh. 19 - 74. Two long straight wires carry the same amount...Ch. 19 - 75. In Problem 74, find the magnetic field at...Ch. 19 -
76. In Problem 74, find the magnetic field at...Ch. 19 - 77. A solenoid of length 0.256 m and radius 2.0 cm...Ch. 19 - 78. Two long straight parallel wires separated by...Ch. 19 - Prob. 79PCh. 19 - Prob. 80PCh. 19 - 81. You are designing the main solenoid for an MRI...Ch. 19 - 82. A solenoid has 4850 turns per meter and radius...Ch. 19 - 83. Find the magnetic field at the center of the...Ch. 19 -
84. Find the magnetic field at point P, the...Ch. 19 - Prob. 85PCh. 19 - Prob. 86PCh. 19 - Prob. 87PCh. 19 - 88. A number of wires carry currents into or out...Ch. 19 - 89. ✦ An infinitely long, thick cylindrical shell...Ch. 19 -
90. In this problem, use Ampère’s law to show...Ch. 19 - Prob. 91PCh. 19 - Prob. 92PCh. 19 - Prob. 93PCh. 19 - Prob. 94PCh. 19 - Prob. 95PCh. 19 - Prob. 96PCh. 19 - Prob. 97PCh. 19 - Prob. 98PCh. 19 - Prob. 99PCh. 19 - Prob. 100PCh. 19 - Prob. 101PCh. 19 - Prob. 102PCh. 19 - Prob. 103PCh. 19 - Prob. 104PCh. 19 - Prob. 105PCh. 19 - 106. Two conducting wires perpendicular to the...Ch. 19 - Prob. 107PCh. 19 - Prob. 108PCh. 19 - Prob. 109PCh. 19 - 110. A solenoid with 8500 turns per meter has...Ch. 19 - Prob. 111PCh. 19 - Prob. 112PCh. 19 - Prob. 113PCh. 19 - Prob. 114PCh. 19 - Prob. 115PCh. 19 - Prob. 116PCh. 19 - Prob. 117PCh. 19 - Prob. 118PCh. 19 - Prob. 119PCh. 19 - Prob. 120PCh. 19 - Prob. 121PCh. 19 - Prob. 122PCh. 19 - Prob. 123PCh. 19 - Prob. 124PCh. 19 - Prob. 125P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem Eleven. A hollow sphere with rotational inertia 1 = (2/3)MR2 is moving with speed v down an incline of angle 0 toward a spring with spring constant k. After traveling a distance d down the incline with no slipping, the sphere makes contact with the spring and compresses it a distance x before it comes momentarily to rest. Find the distance d in terms of the other quantities given. (21) 19.) (A) d=- 2Mg sin kx²-Mv² +x (B) d= 2Mg sin kx²+Mv² +x kx²-Mv² (C) d=- -x (D) d= 2Mg sin 2Mg cos kx²-Mv² 2Mg sin -x (E) d= kx²-Mv²arrow_forward1. A light bulb operates at a temperature of 4,300 K and has an emissivity of 0.600 and a surface area of 5.50 mm². How long would the light bulb have to shine on a 2.00 g piece of ice that is at -30.0°C in order to turn the ice into steam at 120°C? Assume all the energy radiated by the light bulb is absorbed by the ice while it becomes liquid and eventually steam. Give an answer in seconds. The following are specific heats for ice, water, and steam. Cice = 2,090 ***C kg kg."C Cwater = 4,186 C Csteam = 2,010 C kg"C The following are latent heats for water. L 3.33 x 10' J/kg Lv = 2.26 x 10° J/kg (A) 31.6 (B) 56.9 (C) 63.5 (D) 21.6 (E) 97.4 Suppose q; consists of three protons and 92 consists of two protons. Let q; be at the origin and q2 be located at d along the x-axis. See the diagram below. 91 92 Χ d 2. Where would the net electric potential due to these two charges be zero? (A) to the left of gi (B) to the right of 92 (D) to the right of 92, as well as to the left of gi (E) Between…arrow_forwardProblem Six: A homogeneous solid object floats in water with 60.0% of its volume below the surface. When placed in a second liquid, the same object floats with 90.0% of its volume below the surface. (The density of water is 1,000 kg/m³.) Determine the density of the object in kg/m³. 19.) (A) 430 (B) 280 Determine the specific gravity of the liquid. 20.) (A) 0.331 (B) 0.760 (C) 560 (D) 600 (E) 720 (C) 0.880 (D) 0.280 (E) 0.667arrow_forward
- A 1000-kg car traveling east at 30.0 m/s collides with a 950-kg car traveling north at 25.0 m/s. The cars stick together. Assume that any other unbalanced forces are negligible. What is the speed of the wreckage just after the collision? Please do on paper and show all equations and work done to get to the final answer. Along with any helpful diagrams if needed. These are a part of my review questions in the book but i keep getting different answers from what the book says, it is not a graded assignment***arrow_forwardWas not explained in my physics 2 lecture, and I'm confused!arrow_forwardA 75.0-kg person drops from rest a distance of 1.20 m to a platform of negligible mass supported by an ideal stiff spring of negligible mass. The platform drops 6.00 cm before the person comes to rest. What is the spring constant of the spring? Please do on paper and show all equations and work done to get to the final answer. Along with any helpful diagrams if needed. These are a part of my review questions in the book but i keep getting different answers from what the book says, it is not a graded assignment***arrow_forward
- Problem Ten. A uniform rod is suspended in mechanical equilibrium by two strings. If T₁ = 500 N, what is the weight of the rod (in N)? 18.) (A) 120 N (D) 600 N (B) 900 N (C) 500 N (E) 220 N T T Mg STAY Carrow_forwardIn the figure, two boxes, each of mass 35 kg, are at rest and connected as shown. The coefficient of kinetic friction between the inclined surface and the box is 0.38. Find the speed of the boxes just after they have moved 5.5 m. Please do on paper and show all formulas and work done to get final answer This is a review problem , I just keep getting the wrong thing from what the textbook says , so i would like to see the work donearrow_forwardA 64.0-kg skier starting from rest travels 200.0 m down a hill that has a 30.0° slope and a uniform surface. When the skier reaches the bottom of the hill, her speed is 30.0 m/s. How much work is done by friction as the skier comes down the hill? Please do on paper and show all the equations and work done to get to the final answer.arrow_forward
- A 550-kg car moving at 18.5 m/s hits from behind a 560-kg car moving at 11.8 m/s in the same direction. If the new speed of the heavier car is 16.0 m/s, what is the speed of the lighter car after the collision, assuming that any unbalanced forces on the system are negligibly small? Please do on paper and show all equations and work done to get to the final answer. Along with any helpful diagrams if needed. These are a part of my review questions in the book but i keep getting different answers from what the book says, it is not a graded assignment***arrow_forwardA 150kg piano rolls down a 30° incline. A man tries to keep it from accelerating, and manages to keep its acceleration to 1.4 m/s^2 . If the piano rolls 8 m, what is the net work, in joules, done on it by all the forces acting on it? Please do it on paper and show all formulas and work used to get the answerarrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. The answer is .028 T, I just need help understanding how to do it. Please show all steps.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
THE BAR MAGNET; Author: 7activestudio;https://www.youtube.com/watch?v=DWQfL5IJTaQ;License: Standard YouTube License, CC-BY