Bundle: Chemistry, 9th, Loose-Leaf + OWLv2 24-Months Printed Access Card
Bundle: Chemistry, 9th, Loose-Leaf + OWLv2 24-Months Printed Access Card
9th Edition
ISBN: 9781305367760
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
Question
Book Icon
Chapter 19, Problem 20E

(a)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(a)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 232Th and the nuclide after the emission of particles is 228Ra .

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(b)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(b)

Expert Solution
Check Mark

Explanation of Solution

Beta particle is emitted.

The parent nuclide is 228Ra and the nuclide after the emission of particle is 228Ac

Since, there is no change in the mass number of the resultant nuclide; this indicates that the particle emitted is a beta particle.

(c)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(c)

Expert Solution
Check Mark

Explanation of Solution

Beta particle is emitted.

The parent nuclide is 228Ac and the nuclide after the emission of particle is 228Th

Since, there is no change in the mass number of the resultant nuclide; this indicates that the particle emitted is a beta particle.

(d)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(d)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 228Th and the nuclide after the emission of particle is 224Ra

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(e)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(e)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 224Ra and the nuclide after the emission of particle is 220Rn .

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(f)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(f)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 220Rn and the nuclide after the emission of particle is 216Po

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(g)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(g)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 216Po and the nuclide after the emission of particle is 212Pb

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(h)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(h)

Expert Solution
Check Mark

Explanation of Solution

Beta particle is emitted.

The parent nuclide is 212Pb and the nuclide after the emission of particle is 212Bi

Since, there is no change in the mass number of the resultant nuclide. Thus, the particle emitted is a beta particle.

(i)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(i)

Expert Solution
Check Mark

Explanation of Solution

Beta particle is emitted.

The parent nuclide is 212Bi and the nuclide after the emission of particle is 212Po

Since, there is no change in the mass number of the resultant nuclide. Thus, the particle emitted is a beta particle.

(j)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(j)

Expert Solution
Check Mark

Explanation of Solution

Alpha particle is emitted.

The parent nuclide is 212Po and the nuclide after the emission of particle is 208Pb

Since, there is change of +4 in the mass number of the resultant nuclide; this indicates that the particle emitted is an alpha particle.

(k)

Interpretation Introduction

Interpretation: Progressive decay series of Thorium- 232 ending up as lead- 208 is given. Nuclear particle emitted in each step of the series is to be stated.

Concept introduction: Nuclei of radioactive element decompose in various ways. There are two major categories. One involves a change in mass number of the decaying nucleus while others do not. Types of radioactive processes include α particle production, β particle production, γ ray production, electron capture and many others. Electron capture decay involves the capturing of one of the inner orbitals electrons by the nucleus.

Beta particle production decay involves the production of beta particle (10e) that is assigned mass number zero.

A helium nucleus 24He is produced in the alpha decay process.

(k)

Expert Solution
Check Mark

Explanation of Solution

No particle is emitted.

The given species, that is 208Pb , is stable; hence, no particle is emitted.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In the analysis of Mg content in a 25 mL sample, a titration volume of 5 mL was obtained using 0.01 M EDTA. Calculate the Mg content in the sample if the Ca content is 20 ppm
Predict the organic products that form in the reaction below: H. H+ + OH H+ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Explanation Check Click and drag to start drawing a structure. G X C © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Access +
111 Carbonyl Chem Choosing reagants for a Wittig reaction What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 1 2 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure. × ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use

Chapter 19 Solutions

Bundle: Chemistry, 9th, Loose-Leaf + OWLv2 24-Months Printed Access Card

Ch. 19 - Prob. 1QCh. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10QCh. 19 - Prob. 11ECh. 19 - Prob. 12ECh. 19 - Prob. 13ECh. 19 - Prob. 14ECh. 19 - Prob. 15ECh. 19 - Prob. 16ECh. 19 - Prob. 17ECh. 19 - Prob. 18ECh. 19 - Prob. 19ECh. 19 - Prob. 20ECh. 19 - Prob. 21ECh. 19 - Prob. 23ECh. 19 - Prob. 24ECh. 19 - Prob. 26ECh. 19 - Prob. 27ECh. 19 - Prob. 28ECh. 19 - Prob. 29ECh. 19 - Prob. 30ECh. 19 - Prob. 31ECh. 19 - Prob. 32ECh. 19 - Prob. 33ECh. 19 - Prob. 34ECh. 19 - Prob. 35ECh. 19 - Prob. 36ECh. 19 - Prob. 37ECh. 19 - Prob. 38ECh. 19 - Prob. 39ECh. 19 - Prob. 40ECh. 19 - Prob. 41ECh. 19 - Prob. 42ECh. 19 - Prob. 43ECh. 19 - Prob. 44ECh. 19 - Prob. 46ECh. 19 - Prob. 47ECh. 19 - Prob. 48ECh. 19 - Prob. 49ECh. 19 - Prob. 50ECh. 19 - Prob. 51ECh. 19 - Prob. 52ECh. 19 - Prob. 53ECh. 19 - Prob. 54ECh. 19 - Prob. 55ECh. 19 - Prob. 56ECh. 19 - Prob. 57ECh. 19 - Prob. 58ECh. 19 - Prob. 59AECh. 19 - Prob. 60AECh. 19 - Prob. 61AECh. 19 - Prob. 62AECh. 19 - Prob. 63AECh. 19 - Prob. 64AECh. 19 - Prob. 65AECh. 19 - Prob. 66AECh. 19 - Prob. 67AECh. 19 - Prob. 68AECh. 19 - Prob. 69AECh. 19 - Prob. 70AECh. 19 - Prob. 71AECh. 19 - Prob. 72AECh. 19 - Prob. 73CWPCh. 19 - Prob. 74CWPCh. 19 - Prob. 75CWPCh. 19 - Prob. 76CWPCh. 19 - Prob. 77CWPCh. 19 - Prob. 78CWPCh. 19 - Prob. 79CPCh. 19 - Prob. 80CPCh. 19 - Prob. 81CPCh. 19 - Prob. 82CPCh. 19 - Prob. 83CPCh. 19 - Prob. 84CPCh. 19 - Prob. 85CPCh. 19 - Prob. 86CPCh. 19 - Prob. 87IPCh. 19 - Prob. 88IP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning