
Concept explainers
(a)
The neutron and proton numbers for carbon (C), nitrogen (N), and oxygen (O).
(a)

Answer to Problem 1SP
The neutron number for carbon (C) is 6 and proton number of carbon is 6.
The neutron number for Nitrogen (N) is 6 and proton number of Nitrogen is 7.
The neutron number for Oxygen (O) is 6 and proton number of Oxygen is 8.
Explanation of Solution
The number of proton number is equal to the atomic number and proton number plus neutron number is equal to
From the periodic table, the proton number of carbon (C) is 6 and mass number is 12.
Therefore neutron number is
The proton number of Nitrogen (N) is 7 and mass number is 14.
Therefore neutron number is
The proton number of (O) Oxygen is 8 and mass number is 16.
Therefore neutron number is
Thus, the neutron number for carbon (C) is 6 and proton number of carbon is 6.
The neutron number for Nitrogen (N) is 6 and proton number of Nitrogen is 7.
The neutron number for Oxygen (O) is 6 and proton number of Oxygen is 8.
(b)
The ratio of neutrons and protons for the stable isotopes of carbon, Nitrogen and Oxygen.
(b)

Answer to Problem 1SP
The ratio of neutrons and protons for the stable isotopes of carbon, Nitrogen and Oxygen are
Explanation of Solution
The stable isotopes of carbon, Nitrogen and Oxygen are carbon-12, Nitrogen-14 and Oxygen-16 respectively.
In the case of carbon-12 , the neutron number is 6 and proton number is
Write the expression for the ratio of neutron to proton of isotope.
Here,
Substitute
In the case of Nitrogen-14, the neutron number is
Substitute
In the case of Oxygen-16, the neutron number is
Substitute
Conclusion:
Thus, the ratio of neutrons and protons for the stable isotopes of carbon-12, Nitrogen-14 and Oxygen-16 are
(c)
The neutron and proton numbers for silver (Ag), cadmium (Cd), and indium (In).
(c)

Answer to Problem 1SP
The neutron number for silver (Ag) is 61 and proton number of silver is 41.
The neutron number for cadmium (Cd) is 64 and proton number of cadmium is 48.
The neutron number for indium (In) is 66 and proton number of indium is 49.
Explanation of Solution
The number of proton number is equal to the atomic number and proton number plus neutron number is equal to atomic mass. Therefore mass number minus atomic number will give neutron number.
From the periodic table, Atomic number of silver is
Therefore number proton number is
Therefore neutron number is
From the periodic table, Atomic number of cadmium is
Therefore number proton number is
Therefore neutron number is
From the periodic table, Atomic number of indium is
Therefore number proton number is
Therefore neutron number is
Thus, the neutron number for silver (Ag) is 61 and proton number of silver is 41.
The neutron number for cadmium (Cd) is 64 and proton number of cadmium is 48.
The neutron number for indium (In) is 66 and proton number of indium is 49.
(d)
The ratio of neutrons and protons for the stable isotopes of silver, cadmium and indium.
(d)

Answer to Problem 1SP
The ratio of neutrons and protons for the stable isotope of silver is
The ratio of neutrons and protons for the stable isotope of cadmium is
The ratio of neutrons and protons for the stable isotope of indium is
The average value of ratio is
Explanation of Solution
The stable isotopes of silver, cadmium and indium are
In the case of
Write the expression for the ratio of neutron to proton of isotope.
Substitute
In the case of
Substitute
In the case of
Substitute
Write the average value of ratios.
Conclusion:
Thus, the ratio of neutrons and protons for the stable isotope of silver is
The ratio of neutrons and protons for the stable isotope of cadmium is
The ratio of neutrons and protons for the stable isotope of indium is
The average value of ratio is
(e)
The neutron and proton numbers for Thorium (Th), Palladium (Pa), and Uranium (U) and the ratio of neutrons and protons for the stable isotopes of Thorium, Palladium and Uranium.
(e)

Answer to Problem 1SP
The neutron number for Thorium (Th) is 142 and proton number of Thorium is 90.
The neutron number for Palladium (Pa) is 140 and proton number of Palladium is 91.
The neutron number for Uranium (U) is 146 and proton number of Uranium is 92.
Thus, the ratio of neutrons and protons for the stable isotope of Thorium is
The ratio of neutrons and protons for the stable isotope of Palladium is
The ratio of neutrons and protons for the stable isotope of Uranium is
The average value of ratio is
Explanation of Solution
From the periodic table, Atomic number of Thorium is
Therefore number proton number is
Therefore neutron number is
From the periodic table, Atomic number of Palladium is
Therefore number proton number is
Therefore neutron number is
From the periodic table, Atomic number of Uranium is
Therefore number proton number is
Therefore neutron number is
The stable isotopes of Thorium, Palladium, and Uranium are Thorium-232, Palladium-231, and Uranium-
In the case of
Write the expression for the ratio of neutron to proton of isotope.
Substitute
In the case of
Substitute
In the case of
Substitute
Write the average value of ratios.
Conclusion:
Thus, the neutron number for Thorium (Th) is 142 and proton number of Thorium is 90.
The neutron number for Palladium (Pa) is 140 and proton number of Palladium is 91.
The neutron number for Uranium (U) is 146 and proton number of Uranium is 92.
The ratio of neutrons and protons for the stable isotope of Thorium is
The ratio of neutrons and protons for the stable isotope of Palladium is
The ratio of neutrons and protons for the stable isotope of Uranium is
The average value of ratio is
(f)
Why there are extra neutrons when uranium or thorium undergo fission by comparing the ratios of parts b, d, and e.
(f)

Answer to Problem 1SP
The ratio of neutron to proton for heavy nuclei are very large compared to medium nuclei and light nuclei. Therefore during fission these heavy nuclei have to produce extra neutrons to get stable medium nuclei or lighter nuclei.
Explanation of Solution
The neutron to proton ratio simply gives the idea about the extra number of neutron present in the nucleus.
The neutron to proton ratio for heavy nuclei is around
Therefore during fission of heavier to medium nuclei requires emission of extra neutron to get stable nuclei.
Conclusion:
Thus, the ratio of neutron to proton for heavy nuclei are very large compared to medium nuclei and light nuclei. Therefore during fission these heavy nuclei have to produce extra neutrons to get stable medium nuclei or lighter nuclei.
Want to see more full solutions like this?
Chapter 19 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- Please help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardBased on your graph, explain how centripetal force is affected when the hanging mass changes. Does your graph verify the relationship in the equation r = x^i + y^j = r cos ωt I + r sin ωt^j?arrow_forwardDid your experiment results in Data Table 3 verify, to within a reasonable experimental error, the condition of equilibrium of Equation 6: Στanti-clockwise = Στclockwise? Support your response with experimental data. My data shows that they are not equal to each other. So what does this mean? Thanks!arrow_forward
- Please help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardExplain how your experiment met the condition for equilibrium in Equation 4: ΣFvertical = ΣFy = 0.arrow_forwardCan i get answer and solution for this question and can you teach me What we use to get the answer.arrow_forward
- Can i get answer and solution and can you teach me how to get it.arrow_forwardConsider a image that is located 30 cm in front of a lens. It forms an upright image 7.5 cm from the lens. Theillumination is so bright that that a faint inverted image, due to reflection off the front of the lens, is observedat 6.0 cm on the incident side of the lens. The lens is then turned around. Then it is observed that the faint,inverted image is now 10 cm on the incident side of the lens.What is the index of refraction of the lens?arrow_forward2. In class, we discussed several different flow scenarios for which we can make enough assumptions to simplify the Navier-Stokes equations enough to solve them and obtain an exact solution. Consulting the cylindrical form of the Navier-Stokes equations copied below, please answer the following questions. др a 1 a + +0x- + +O₂ = Pgr + μl 18²v, 2 ave ²v₁] az2 + at or r de r Əz dr ar Vodvz др [18 + + +Or + +Vz = Pgz +fl at ar r 20 ôz ôz dr ave дов V,Ve ave +Or + + = pge at dr r 80 Əz + az2 a.) In class, we discussed how the Navier-Stokes equations are an embodiment of Newton's 2nd law, F = ma (where bolded terms are vectors). Name the 3 forces that we are considering in our analysis of fluid flow for this class. др a 10 1 ve 2 av 2200] + +μ or 42 30 b.) If we make the assumption that flow is "fully developed" in the z direction, which term(s) would go to zero? Write the term below, describe what the term means in simple language (i.e. do not simply state "it is the derivative of a with…arrow_forward
- 1. Consult the form of the x-direction Navier-Stokes equation below that we discussed in class. (For this problem, only the x direction equation is shown for simplicity). Note that the equation provided is for a Cartesian coordinate system. In the spaces below, indicate which of the following assumptions would allow you to eliminate a term from the equation. If one of the assumptions provided would not allow you to eliminate a particular term, write "none" in the space provided. du ди at ( + + + 매일) du ди = - Pgx dy др dx ²u Fu u + fl + ax2 ay² az2 - дх - Əz 1 2 3 4 5 6 7 8 9 Assumption Flow is in the horizontal direction (e.g. patient lying on hospital bed) Flow is unidirectional in the x-direction Steady flow We consider the flow to be between two flat, infinitely wide plates There is no pressure gradient Flow is axisymmetric Term(s) in equationarrow_forwardDon't use ai to answer I will report you answerarrow_forwardwhy did the expert subtract the force exerted by the hand and the elbow by the force due to the weight of the hand and forearm and force exerted by the tricep. Does the order matter and how do you determine what to put first. Question 4 AP, CHAPTER 13 FROM BASIC BIOMECHANICS 8TH EDITIONarrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning





