EBK OPERATIONS MANAGEMENT
EBK OPERATIONS MANAGEMENT
12th Edition
ISBN: 9780100283961
Author: Stevenson
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 1P

a)

Summary Introduction

To solve: The linear programming problem and answer the given questions.

Introduction:

Linear programming:

Linear programming is a mathematical modelling method where a linear function is maximized or minimized taking into consideration the various constraints present in the problem. It is useful in making quantitative decisions in business planning.

a)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Maximize Z=4x1+3x2Subject to:6x1+4x248lb(Material)4x1+8x280hr(Labor)x1,x20(Nonnegativity)

Calculation of coordinates for each constraint and objective function:

Constraint 1:

6x1+4x248lb(Material)

Substituting x1=0 to find x2,

6(0)+4x2=484x2=48x2=484x2=12

Substituting x2=0 to find x1,

6x1+4(0)=486x1=48x1=486x1=8

Constraint 2:

4x1+8x280hr(Labor)

Substituting x1=0 to find x2,

4(0)+8x2=808x2=80x2=808x2=10

Substituting x2=0 to find x1,

4x1+8(0)=804x1=80x1=804x1=20

Objective function:

The problem is solved with iso-profit line method.

Let 4x1+3x2=24

Substituting x1=0 to find x2,

4(0)+3x2=243x2=24x2=243x2=8

Substituting x2=0 to find x1,

4x1+3(0)=244x1=24x1=244x1=6

Graph:

EBK OPERATIONS MANAGEMENT, Chapter 19, Problem 1P , additional homework tip  1

(1) Optimal value of the decision variables and Z:

The coordinates for the profit line is (6, 8). The profit line is moved away from the origin. The highest point at which the profit line intersects in the feasible region will be the optimum solution. The following equation are solved as simultaneous equation to find optimum solution.

6x1+4x2=48 (1)

4x1+8x2=80 (2)

Solving (1)and (2)we get,

x1=2,x2=9

The values are substituted in the objective function to find the objective function value.

Maximize Z=4(2)+3(9)=8+27=35

Optimal solution:

x1=2x2=9Z=35

(2)

None of the constraints are having slack. Both the ≤ constraints are binding.

(3)

There are no ≥ constraints. Hence, none of the constraints have surplus.

(4)

There are no redundant constraints.

b)

Summary Introduction

To solve: The linear programming problem and answer the questions.

Introduction:

Linear programming:

Linear programming is a mathematical modelling method where a linear function is maximized or minimized taking into consideration the various constraints present in the problem. It is useful in making quantitative decisions in business planning.

b)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Maximize Z=2x1+10x2Subject to:10x1+4x240wk(Durability)x1+6x224psi(Strength)x1+2x214hr(Time)x1,x20(Nonnegativity)

Calculation of coordinates for each constraint and objective function:

Constraint 1:

10x1+4x240wk(Durability)

Substituting x1=0 to find x2,

10(0)+4x2=404x2=40x2=404x2=10

Substituting x2=0 to find x1,

10x1+4(0)=4010x1=40x1=4010x1=4

Constraint 2:

x1+6x224psi(Strength)

Substituting x1=0 to find x2,

(0)+6x2=246x2=24x2=246x2=4

Substituting x2=0 to find x1,

x1+6(0)=24x1=24x1=241x1=24

Constraint 3:

x1+2x214hr(Time)

Substituting x1=0 to find x2,

(0)+2x2=142x2=14x2=142x2=7

Substituting x2=0 to find x1,

x1+2(0)=14x1=14x1=141x1=14

Objective function:

The problem is solved with iso-profit line method.

Let 2x1+10x2=20

Substituting x1=0 to find x2,

2(0)+10x2=2010x2=20x2=2010x2=2

Substituting x2=0 to find x1,

2x1+10(0)=202x1=20x1=202x1=10

Graph:

EBK OPERATIONS MANAGEMENT, Chapter 19, Problem 1P , additional homework tip  2

(1) Optimal value of the decision variables and Z:

The coordinates for the profit line is (10, 2). The profit line is moved away from the origin. The highest point at which the profit line intersects in the feasible region will be the optimum solution. The following equations are solved as simultaneous equation to find optimum solution.

10x1+4x2=40 (1)

x1+2x2=14 (2)

Solving (1)and (2)we get,

x1=1.5,x2=6.25

The values are substituted in the objective function to find the objective function value.

Maximize Z=2(1.5)+10(6.25)=3+62.5=65.5

Optimal solution:

x1=1.5x2=6.25Z=65.5

(2)

None of the constraints are having slack. The time constraint has ≤ and it is binding.

(3)

Durability and strength constraints have ≥ in them. The durability constraint is binding and has no surplus. The strength constraint has surplus as shown below:

(1.5)+6(6.25)241.5+37.5243924

The surplus is 15 (39 -24).

(4)

There are no redundant constraints.

c)

Summary Introduction

To solve: The linear programming problem and answer the questions.

Introduction:

Linear programming:

Linear programming is a mathematical modelling method where a linear function is maximized or minimized taking into consideration the various constraints present in the problem. It is useful in making quantitative decisions in business planning.

c)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Maximize Z=6A+3BSubject to:20A+6B600lb(Material)25A+20B1,000hr(Machinery)20A+30B1,200(Labor)A,B0(Nonnegativity)

Calculation of coordinates for each constraint and objective function:

Constraint 1:

20A+6B600lb(Material)

Substituting A=0 to find B,

20(0)+6B=6006B=600B=6006B=100

Substituting B=0 to find A,

20A+6(0)=60020A=600A=60020A=30

Constraint 2:

25A+20B1,000hr(Machinery)

Substituting A=0 to find B,

25(0)+20B=1,00020B=1,000B=1,00020B=50

Substituting B=0 to find A,

25A+20(0)=1,00025A=1,000A=1,00025A=40

Constraint 3:

20A+30B1,200

Substituting A=0 to find B,

20(0)+30B=1,20030B=1,200B=1,20030B=40

Substituting B=0 to find A,

20A+30(0)=1,20020A=1,200A=1,20020A=60

Objective function:

The problem is solved with iso-profit line method.

Let6A+3B=120

Substituting A=0 to find B,

6(0)+3B=1203B=120B=1203B=40

Substituting B=0 to find A,

6A+3(0)=1206A=120A=1206A=20

Graph:

EBK OPERATIONS MANAGEMENT, Chapter 19, Problem 1P , additional homework tip  3

(1) Optimal value of the decision variables and Z:

The coordinates for the profit line is (20, 40). The profit line is moved away from the origin. The highest point at which the profit line intersects in the feasible region will be the optimum solution. The following equation are solved as simultaneous equation to find optimum solution.

20A+6B=600 (1)

25A+20B=1,000 (2)

Solving (1) and (2) we get,

A=24,B=20

The values are substituted in the objective function to find the objective function value.

Maximize Z=6(24)+3(20)=144+60=204

Optimal solution:

A=24B=20Z=204

(2)

The material and machinery constraint has ≤ and it is binding and has zero slack. The labor constraint has slack as shown below:

20(24)+30(20)1,200480+6001,2001,0801,200

The slack is 120 (1,200 – 1,080).

(3)

There are no constraints with ≥. Hence, no constraints have surplus.

(4)

There are no redundant constraints

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Sarah Anderson, the Marketing Manager at Exeter Township's Cultural Center, is conducting research on the attendance history for cultural events in the area over the past ten years. The following data has been collected on the number of attendees who registered for events at the cultural center.   Year Number of Attendees 1 700 2 248 3 633 4 458 5 1410 6 1588 7 1629 8 1301 9 1455 10 1989 You have been hired as a consultant to assist in implementing a forecasting system that utilizes various forecasting techniques to predict attendance for Year 11.   a) Calculate the Three-Period Simple Moving Average b) Calculate the Three-Period Weighted Moving Average (weights: 50%, 30%, and 20%; use 50% for the most recent period, 30% for the next most recent, and 20% for the oldest) c) Apply Exponential Smoothing with the smoothing constant alpha = 0.2. d) Perform a Simple Linear Regression analysis and provide the adjusted…
​Ruby-Star Incorporated is considering two different vendors for one of its​ top-selling products which has an average weekly demand of 70 units and is valued at ​$90 per unit. Inbound shipments from vendor 1 will average 390 units with an average lead time​ (including ordering delays and transit​ time) of 4 weeks. Inbound shipments from vendor 2 will average 490 units with an average lead time of 2 weeksweeks. ​Ruby-Star operates 52 weeks per​ year; it carries a 4​-week supply of inventory as safety stock and no anticipation inventory. Part 2 a. The average aggregate inventory value of the product if​ Ruby-Star used vendor 1 exclusively is ​$enter your response here.
Sam's Pet Hotel operates 50 weeks per year, 6 days per week, and uses a continuous review inventory system. It purchases kitty litter for $13.00 per bag. The following information is available about these bags: > Demand 75 bags/week > Order cost = $52.00/order > Annual holding cost = 20 percent of cost > Desired cycle-service level = 80 percent >Lead time = 5 weeks (30 working days) > Standard deviation of weekly demand = 15 bags > Current on-hand inventory is 320 bags, with no open orders or backorders. a. Suppose that the weekly demand forecast of 75 bags is incorrect and actual demand averages only 50 bags per week. How much higher will total costs be, owing to the distorted EOQ caused by this forecast error? The costs will be $higher owing to the error in EOQ. (Enter your response rounded to two decimal places.)
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,