Concept explainers
a)
The direction of the magnetic force.
a)
Answer to Problem 1CQ
Explanation of Solution
The velocity is directed along
Conclusion: The direction of the magnetic force will be
b)
The direction of the magnetic force.
b)
Answer to Problem 1CQ
Explanation of Solution
The velocity is directed along
Conclusion: The direction of the magnetic force will be
c)
The direction of the magnetic force.
c)
Answer to Problem 1CQ
Explanation of Solution
The velocity is directed along
Conclusion: The direction of the magnetic force will be
d)
The direction of the magnetic force.
d)
Answer to Problem 1CQ
Explanation of Solution
The velocity is directed along
Conclusion: The direction of the magnetic force will be
e)
The direction of the magnetic force.
e)
Answer to Problem 1CQ
Explanation of Solution
The velocity is directed along
Conclusion: The direction of the magnetic force will be
f)
The direction of the magnetic force.
f)
Answer to Problem 1CQ
Explanation of Solution
The velocity is directed along
Conclusion: The direction of the magnetic force will be
Want to see more full solutions like this?
Chapter 19 Solutions
EBK COLLEGE PHYSICS
- Figure CQ19.7 shows a coaxial cable carrying current I in its inner conductor and a return current of the same magnitude in the opposite direction in the outer conductor. The magnetic field strength at r = r0 is Find the ratio B/B0, at (a) r = 2r0 and (b) r = 4r0. Figure CQ19.7arrow_forwardIn Figure P22.43, the current in the long, straight wire is I1 = 5.00 A and the wire lies in the plane of the rectangular loop, which carries a current I2 = 10.0 A. The dimensions in the figure are c = 0.100 m, a = 0.150 m, and = 0.450 m. Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire. Figure P22.43 Problems 43 and 44.arrow_forwardA uniform magnetic field of magnitude is directed parallel to the z-axis. A proton enters the field with a velocity v=(4j+3k)106m/s and travels in a helical path with a radius of 5.0 cm. (a) What is the value of B? (b) What is the time required for one trip around the helix? (c) Where is the proton 5.0107s after entering the field?arrow_forward
- An infinitely long wire carrying a current I is bent at a right angle as shown in Figure P22.30. Determine the magnetic field at point P, located a distance x from the corner of the wire. Figure P22.30arrow_forwardA toroid with an inner radius of 20 cm and an outer radius of 22 cm is tightly wound with one layer of wire that has a diameter of 0.25 mm. (a) How many turns are there on the toroid? (b) If the current through the toroid windings is 2.0 A, what is the strength of the magnetic field at the center of the toroid?arrow_forwardOne long wire carries current 30.0 A to the left along the x axis. A second long wire carries current 50.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of 2.00 C is moving with a velocity of 150iMm/s along the line (y = 0.100 m, z = 0). Calculate the vector magnetic force acting on the particle. (c) What If? A uniform electric field is applied to allow this particle to pass through this region undetected. Calculate the required vector electric field.arrow_forward
- A packed bundle of 100 long, straight, insulated wires forms a cylinder of radius R = 0.500 cm. If each wire carries 2.00 A, what are (a) the magnitude and (b) the direction of the magnetic force per unit length acting on a wire located 0.200 cm from the center of the bundle? (c) What If? Would a wire on the outer edge of the bundle experience a force greater or smaller than the value calculated in parts (a) and (b)? Give a qualitative argument for your answer.arrow_forwardA wire carrying a current I is bent into the shape of an exponential spiral, r = e, from = 0 to = 2 as suggested in Figure P29.47. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle between a radial line and its tangent line at any point on a curve r = f() is related to the function by tan=rdr/d Use this fact to show that = /4. (b) Find the magnetic field at the origin. Figure P29.47arrow_forwardWhy is the following situation impossible? Figure P28.46 shows an experimental technique for altering the direction of travel for a charged particle. A particle of charge q = 1.00 C and mass m = 2.00 1015 kg enters the bottom of the region of uniform magnetic field at speed = 2.00 105 m/s, with a velocity vector perpendicular to the field lines. The magnetic force on the particle causes its direction of travel to change so that it leaves the region of the magnetic field at the top traveling at an angle from its original direction. The magnetic field has magnitude B = 0.400 T and is directed out of the page. The length h of the magnetic field region is 0.110 m. An experimenter performs the technique and measures the angle at which the particles exit the top of the field. She finds that the angles of deviation are exactly as predicted. Figure P28.46arrow_forward
- A proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forwardA magnetic field exerts a torque on each of the current carrying single loops of wire shown in Figure OQ22.12. The loops lie in the xy plane, each carrying the same magnitude current, and the uniform magnetic field points in the positive x direction. Rank the loops by the magnitude of the torque exerted on them by the field from largest to smallest Figure OQ22.12arrow_forwardWithin the green dashed circle shown in Figure P23.28, the magnetic field changes with time according to the expression B = 2.00t3 − 4.00t2 + 0.800, where B is in teslas, t is in seconds, and R = 2.50 cm. When t = 2.00 s, calculate (a) the magnitude and (b) the direction of the force exerted on an electron located at point P1, which is at a distance r1 = 5.00 cm from the center of the circular field region. (c) At what instant is this force equal to zero?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning