Concept explainers
(a)
Interpretation:
Magnesium hydroxide and nickel(II) hydroxide pair is given, the more soluble compound in water has to be identified.
Concept Introduction:
Solubility product constant:
The equilibrium constant of a more soluble ionic compound in water at the higher solubility is known as solubility product constant.
The equilibrium constant of more soluble ionic compound is given by
Ion product:
The multiplication of concentrations of ions which are raised to the power of number of respective ions present in the molecular formula. This gives the ion product.
Precipitation occurs when solution is supersaturated,
Precipitation will not occurs when solution is saturated and in equilibrium,
Precipitation will not occurs when solution is unsaturated,
(b)
Interpretation:
Lead(II) sulfide and copper(II) sulfide pair is given, the more soluble compound in water has to be identified.
Concept Introduction:
Solubility product constant:
The equilibrium constant of a more soluble ionic compound in water at the higher solubility is known as solubility product constant.
The equilibrium constant of more soluble ionic compound is given by
Ion product:
The multiplication of concentrations of ions which are raised to the power of number of respective ions present in the molecular formula. This gives the ion product.
Precipitation occurs when solution is supersaturated,
Precipitation will not occurs when solution is saturated and in equilibrium,
Precipitation will not occurs when solution is unsaturated,
(c)
Interpretation:
Silver sulfate and magnesium fluoride pair is given, the more soluble compound in water has to be identified.
Concept Introduction:
Solubility product constant:
The equilibrium constant of a more soluble ionic compound in water at the higher solubility is known as solubility product constant.
The equilibrium constant of more soluble ionic compound is given by
Ion product:
The multiplication of concentrations of ions which are raised to the power of number of respective ions present in the molecular formula. This gives the ion product.
Precipitation occurs when solution is supersaturated,
Precipitation will not occurs when solution is saturated and in equilibrium,
Precipitation will not occurs when solution is unsaturated,

Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
CHEM 212:CHEMISTSRY V 2
- Synthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- If possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forward
- We mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forward
- Indicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are mixed with sodium ethoxide in ethanol.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





