![Bundle: Physics for Scientists and Engineers, Technology Update, 9th Loose-leaf Version + WebAssign Printed Access Card, Multi-Term](https://www.bartleby.com/isbn_cover_images/9781305714892/9781305714892_largeCoverImage.gif)
(a)
The expression for the final length of the rod.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.77CP
The expression for the final length of the rod is
Explanation of Solution
Given Info: The length of the rod is
The relation of the coefficient of the linear expansion with the changing length with temperature is,
Here,
To get the expression for the final length at high temperature, integrate the above expression.
Here,
Conclusion:
Therefore, the expression for the final length of the rod is
(b)
The error caused by the approximation.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.77CP
The error caused by the approximation is
Explanation of Solution
Given Info: The length of the rod is
Formula to calculate the new length of the rod at higher temperature is,
Substitute
Thus, the length of the rod at higher temperature is
The formula used in part (a) to calculate the new length of the rod at higher temperature is,
Substitute
Formula to calculate the percentage difference of the new length is,
Substitute
Conclusion:
Therefore, error caused by the approximation is
(c)
The error caused by the approximation.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.77CP
The error caused by the approximation is
Explanation of Solution
Given Info: The length of the rod is
Formula to calculate the new length of the rod at higher temperature is,
Substitute
Thus, the new length of the rod at higher temperature is
The formula used in part (a) to calculate the new length of the rod at higher temperature is,
Substitute
Formula to calculate the percentage difference of the new length is,
Substitute
Conclusion:
Therefore, the error caused by the approximation is
(d)
The receding level of the turpentine.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 19.77CP
The receding level of the turpentine is
Explanation of Solution
Given info: The length of the rod is
The formula used in part (a) to calculate the new length of the rod at higher temperature is,
The volume varies correspondingly as the above expression.
Here,
The change in the temperature is,
Substitute
Thus, the change in temperature is
Substitute
Thus, the final volume of the turpentine is
Substitute
Write the expression to calculate the volume of the turpentine that overflows.
Substitute
To calculate the volume of the turpentine remaining is,
Thus, the volume of the turpentine remaining is
Receding level of turpentine is,
Conclusion:
Therefore, receding level of the turpentine is
Want to see more full solutions like this?
Chapter 19 Solutions
Bundle: Physics for Scientists and Engineers, Technology Update, 9th Loose-leaf Version + WebAssign Printed Access Card, Multi-Term
- Starter the rule of significantarrow_forwardPlease solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!arrow_forwardPlease solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!arrow_forward
- No chatgpt plsarrow_forwardNo chatgpt plsarrow_forwardCar A starts from rest at t = 0 and travels along a straight road with a constant acceleration of 6 ft/s^2 until it reaches a speed of 60ft/s. Afterwards it maintains the speed. Also, when t = 0, car B located 6000 ft down the road is traveling towards A at a constant speed of 80 ft/s. Determine the distance traveled by Car A when they pass each other.Write the solution using pen and draw the graph if needed.arrow_forward
- In the given circuit the charge on the plates of 1 μF capacitor, when 100 V battery is connected to the terminals A and B, will be 2 μF A 1 µF B 3 µFarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed. NOT AI PLSarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)