
You have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by
- a writing the
symbols of the elements and ions in the appropriate areas (both solutions and electrodes). - b identifying the anode and cathode.
- c indicating the direction of electron flow through the external circuit.
- d indicating the cell potential (assume standard conditions, with no current flowing).
- e writing the appropriate half-reaction under each of the containers.
- f indicating the direction of ion flow in the salt bridge.
- g identifying the species undergoing oxidation and reduction.
- h writing the balanced overall reaction for the cell.
(a)

Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
The symbols of elements and ions in cell are,
Symbols of Aluminium is Al, Silver is Ag, Aluminium ion is
Explanation of Solution
The symbols of elements and ions in cell are,
Symbol of Aluminium is Al and it is an anode
Symbol of Silver is Ag and it is an cathode
Symbol of Aluminium ion is
Symbol of Silver ion is
(b)

Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
Silver rod in Silver nitrate is a cathode and Aluminium rod in Aluminium nitrate is an anode.
Explanation of Solution
In given cell, Silver rod in Silver nitrate is a cathode and Aluminium rod in Aluminium nitrate is an anode.
(c)

Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
Figure 1
Explanation of Solution
(d)

Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
The cell potential (EMF) of given voltaic cell is
Explanation of Solution
The standard reduction potentials of (SRQ) of half cell reactions are record from standard reduction potentials table and they are,
The most positive SQR is considering as cathode potential.
The SQR of electrodes are plugged in the bellow equation to give cell potential of given voltaic cell.
The cell potential (EMF) of given voltaic cell is
(e)

Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
The Oxidation half cell reaction is,
The reduction half cell reaction is,
Explanation of Solution
The Oxidation half cell reaction is,
The reduction half cell reaction is,
(f)

Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
Explanation of Solution
Figure 1
(g)

Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
Explanation of Solution
The Oxidation half cell reaction is,
The reduction half cell reaction is,
Hence,
(h)

Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
The balanced overall cell reaction is,
Explanation of Solution
The Oxidation half cell reaction is,
The reduction half cell reaction is,
To sum the two half cell reactions and remove a electron to give a balanced overall cell reaction.
The balanced overall cell reaction is,
Want to see more full solutions like this?
Chapter 19 Solutions
Lab Manual Experiments in General Chemistry
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forward
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





