University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 19.14E
Boiling Water at High Pressure. When water is boiled at a pressure of 2.00 atm, the heat of vaporization is 2.20 × 106 J/kg and the boiling point is 120°C. At this pressure, 1.00 kg of water has a volume of 1.00 × 10−3 m3, and 1.00 kg of steam has a volume of 0.824 m3. (a) Compute the work done when 1.00 kg of steam is formed at this temperature. (b) Compute the increase in internal energy of the water.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Air that initially occupies 0.140 m3 at a gauge pressure of 103.0 kPa is expanded isothermally to a pressure of 101.3 kPa and then cooled at constant pressure until it reaches its initial volume. Compute the work done by the air. (Gauge pressure is the difference between the actual pressure and atmospheric pressure.)
Gas in a container is at a pressure of 1.2 atm and a volume of 7.0 m3.
(a) What is the work done on the gas if it expands at constant pressure to twice its initial volume?
(b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume?
Gas in a container is at a pressure of 2.0 atm and a volume of 7.0 m3.
(a) What is the work done on the gas if it expands at constant pressure to twice its initial volume?J(b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume?
Chapter 19 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 19.1 - In Example 17.7 (Section 17.6), what is the sign...Ch. 19.2 - A quantity of ideal gas undergoes an expansion...Ch. 19.3 - The system described in Fig. 19.7a undergoes four...Ch. 19.4 - Rank the following thermodynamic processes...Ch. 19.5 - Which of the processes in Fig. 19.7 are isochoric?...Ch. 19.6 - Prob. 19.6TYUCh. 19.7 - You want to cool a storage cylinder containing 10...Ch. 19.8 - You have four samples of ideal gas, each of which...Ch. 19 - For the following processes, is the work done by...Ch. 19 - Prob. 19.2DQ
Ch. 19 - In which situation must you do more work:...Ch. 19 - Prob. 19.4DQCh. 19 - Discuss the application of the first law of...Ch. 19 - When ice melts at 0C, its volume decreases. Is the...Ch. 19 - You hold an inflated balloon over a hot-air vent...Ch. 19 - You bake chocolate chip cookies and put them,...Ch. 19 - Imagine a gas made up entirely of negatively...Ch. 19 - In an adiabatic process for an ideal gas, the...Ch. 19 - When you blow on the back of your hand with your...Ch. 19 - An ideal gas expands while the pressure is kept...Ch. 19 - A liquid is irregularly stirred in a...Ch. 19 - When you use a hand pump to inflate the tires of...Ch. 19 - In the carburetor of an aircraft or automobile...Ch. 19 - On a sunny day, large bubbles of air form on the...Ch. 19 - The prevailing winds on the Hawaiian island of...Ch. 19 - Prob. 19.18DQCh. 19 - In a constant-volume process, dU = nCV dT. But in...Ch. 19 - When a gas surrounded by air is compressed...Ch. 19 - When a gas expands adiabatically, it does work on...Ch. 19 - Prob. 19.22DQCh. 19 - A system is taken from state a to state b along...Ch. 19 - A thermodynamic system undergoes a cyclic process...Ch. 19 - Two moles of an ideal gas are heated at constant...Ch. 19 - Six moles of an ideal gas are in a cylinder fitted...Ch. 19 - Prob. 19.3ECh. 19 - BIO Work Done by the Lungs. The graph in Fig....Ch. 19 - CALC During the time 0.305 mol of an ideal gas...Ch. 19 - A gas undergoes two processes. In the first, the...Ch. 19 - Work Done in a Cyclic Process. (a) In Fig. 19.7a,...Ch. 19 - Figure E19.8 shows a pV-diagram for an ideal gas...Ch. 19 - A gas in a cylinder expands from a volume of 0.110...Ch. 19 - Five moles of an ideal monatomic gas with an...Ch. 19 - The process abc shown in the pV-diagram in Fig....Ch. 19 - A gas in a cylinder is held at a constant pressure...Ch. 19 - The pV-diagram in Fig. E19.13 shows a process abc...Ch. 19 - Boiling Water at High Pressure. When water is...Ch. 19 - An ideal gas is taken from a to b on the...Ch. 19 - During an isothermal compression of an ideal gas,...Ch. 19 - A cylinder contains 0.250 mol of carbon dioxide...Ch. 19 - A cylinder contains 0.0100 mol of helium at T =...Ch. 19 - In an experiment to simulate conditions inside an...Ch. 19 - When a quantity of monatomic ideal gas expands at...Ch. 19 - Heat Q flows into a monatomic ideal gas, and the...Ch. 19 - Three moles of an ideal monatomic gas expands at a...Ch. 19 - An experimenter adds 970 J of heat to 1.75 mol of...Ch. 19 - Propane gas (C3Hg) behaves like an ideal gas with ...Ch. 19 - CALC The temperature of 0.150 mol of an ideal gas...Ch. 19 - Five moles of monatomic ideal gas have initial...Ch. 19 - A monatomic ideal gas that is initially at 1.50 ...Ch. 19 - The engine of a Ferrari F355 F1 sports car takes...Ch. 19 - During an adiabatic expansion the temperature of...Ch. 19 - A player bounces a basketball on the floor,...Ch. 19 - On a warm summer day, a large mass of air...Ch. 19 - A cylinder contains 0.100 mol of an ideal...Ch. 19 - A quantity of air is taken from state a to state b...Ch. 19 - One-half mole of an ideal gas is taken from state...Ch. 19 - Figure P19.35 shows the pV-diagram for a process...Ch. 19 - The graph in Fig. P19.36 shows a pV-diagram for...Ch. 19 - When a system is taken from state a to state b in...Ch. 19 - A thermodynamic system is taken from state a to...Ch. 19 - A volume of air (assumed to be an ideal gas) is...Ch. 19 - Three moles of argon gas (assumed to be an ideal...Ch. 19 - Two moles of an ideal monatomic gas go through the...Ch. 19 - Three moles of an ideal gas are taken around cycle...Ch. 19 - Figure P19.43 shows a pV-diagram for 0.0040 mol of...Ch. 19 - (a) Onc-third of a mole of He gas is taken along...Ch. 19 - Starting with 2.50 mol of N2 gas (assumed to be...Ch. 19 - Nitrogen gas in an expandable container is cooled...Ch. 19 - CALC A cylinder with a frictionless, movable...Ch. 19 - CP A Thermodynamic Process in a Solid. A cube of...Ch. 19 - Prob. 19.49PCh. 19 - High-Altitude Research. A large research balloon...Ch. 19 - An air pump has a cylinder 0.250 m long with a...Ch. 19 - A certain ideal gas has molar heat capacity at...Ch. 19 - A monatomic ideal gas expands slowly to twice its...Ch. 19 - CALC A cylinder with a piston contains 0.250 mol...Ch. 19 - Use the conditions and processes of Problem 19.54...Ch. 19 - CALC A cylinder with a piston contains 0.150 mol...Ch. 19 - Use the conditions and processes of Problem 19.56...Ch. 19 - Comparing Thermodynamic Processes. In a cylinder,...Ch. 19 - DATA You have recorded measurements of the heat...Ch. 19 - DATA You compress a gas in an insulated cylinderno...Ch. 19 - DATA You place a quantity of gas into a metal...Ch. 19 - Prob. 19.62CPCh. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5. A 65 kg gymnast wedges himself between two closely spaced vertical walls by pressing his hands and feet ag...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The tension which is largest in magnitude .
Physics (5th Edition)
To measure the heat capacity of an object, all you usually have to do is put it in thermal contact with another...
An Introduction to Thermal Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forwardOne mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the initial volume and (b) the temperature of the gas.arrow_forwardWhen 400 J of heat are slowly added to 10 mol of an ideal monatomic gas, its temperature rises by 10 . What is the work done on the gas?arrow_forward
- Gas in a container is at a pressure of 1.8 atm and a volume of 6.0 m³. (a) What is the work done on the gas if it expands at constant pressure to twice its initial volume? X Use the expression relating the pressure and change in volume to the work done. J (b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume?arrow_forward[ans: 9.543 kJ] 3. Air is compressed slowly and frictionlessly in a cylinder according to the relationship pV1.4=constant from an initial volume of 0.8 m³ and pressure of 100 kN/m2 to a final volume of %3| 0.4 m³. Calculate the work. [ans: -63.9 kJ] 3 Hociequilihrium process from a volume of 0.2 m³ atarrow_forwardIf during an expansion process the volume of a gas changes from 0.2 to 0.5 m^3 and pressure changes according to equation P= 1500(v/100+1) where P is in Pa and V is in m^3. What is the work done by gas in kJ?arrow_forward
- Find the numeric value of the work done on the gas in the following figures. (Enter your answers in J.)arrow_forwardAn ideal gas with a molecular mass of 31 is contained in an inflexible tank. It is heated from 242.91°C to 550.84°C. If the change in internal energy is found to be 178 kJ/kg. compute for the work in kJ/kg.arrow_forward8000 J of heat are added to an ideal monatomic gas in an isovolumetric process. The gas then undergoes an isobaric expansion at 0.2 atm pressure. The two processes happen such that the final temperature is equal to the initial temperature. What is the change in volume for the gas? [Your answer will be in terms of m3]arrow_forward
- Steam to drive an old-fashioned steam locomotive is supplied at a constant gauge pressure of 1.9 × 106 N/m² to a piston with a 0.19 m radius. By calculating PAV , find the work done by the steam when the piston moves 0.81 m in J. Note that this is the net work output, since gauge pressure is used. W= Now find the amount of work done by calculating the force exerted times the distance traveled in J.arrow_forwardA gas in a cylinder expands from a volume of 0.110 m³ to 0.320 m³. Heat flows into the gas just rapidly enough to keep the pressure constant at 1.65 × 105 Pa during the expansion. The total heat added is 1.15× 105 J. (a) Find the work done by the gas.arrow_forwardPlease asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY