
(a)
Interpretation:
Picture that represents the solution just after the solid
Concept introduction:
Solubility:
Solubility is a chemical property of a given substance i.e. solute to dissolve in solvent.
For slightly soluble salts the solute dissolves in little amount in solvent to give respective ions and there is always an equilibrium between the ions of the salt and the unionized molecules.
(b)
Interpretation:
Value of
Concept introduction:
Solubility:
Solubility is defined as the maximum amount of the solute that can be dissolved in the solvent at equilibrium.
Solubility product constant:
Solubility product constant is defined for equilibrium between solids and its respective ions in the solution. Generally, solubility product refers only to insoluble or slightly soluble ionic substances that make equilibrium in water.
It is defined as the product of concentration of ions of a sparingly soluble salt in its saturated solution at
This value indicates the degree of dissociation of a compound in water. More the value of
Considering an equilibrium of salt
(c)
Interpretation:
Figure representing the solution after addition of
Concept introduction:
Common ion effect:
Suppression of ionization of a weak electrolyte by the addition of a strong electrolyte in the same solution and one ion must be common in between both the weak and strong electrolyte.
Le Chatelier’s principle:
When a system in equilibrium is subjected to any external disturbance like change of pressure, volume, temperature etc…Then the system acts in a way to prevent that change. This is called Le Chatelier’s principle.
(d)
Interpretation:
The scene that interprets the situation after lowering of
Concept introduction:
Chemical equilibrium is the process where the
Le Chatelier’s principle:
When a system in equilibrium is subjected to any external disturbance like change of pressure, volume, temperature etc… Then the system acts in a way to prevent that change. This is called Le Chatelier’s principle.

Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forward
- Given 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- Concentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forwardExplain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





