The molar concentration of iron ion F e 3 + when iron nitrate and K S C N solutions are mixed has to be calculated. Concept Introduction: Equilibrium constant ( K c ) : Equilibrium constant ( K c ) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction . Consider the reaction where A reacts to give B. aA ⇌ bB Rate of forward reaction = Rate of reverse reaction k f [ A ] a =k r [ B ] b On rearranging, [ B ] b [ A ] a = k f k r =K c Where, k f is the rate constant of the forward reaction. k r is the rate constant of the reverse reaction. K c is the equilibrium constant.
The molar concentration of iron ion F e 3 + when iron nitrate and K S C N solutions are mixed has to be calculated. Concept Introduction: Equilibrium constant ( K c ) : Equilibrium constant ( K c ) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction . Consider the reaction where A reacts to give B. aA ⇌ bB Rate of forward reaction = Rate of reverse reaction k f [ A ] a =k r [ B ] b On rearranging, [ B ] b [ A ] a = k f k r =K c Where, k f is the rate constant of the forward reaction. k r is the rate constant of the reverse reaction. K c is the equilibrium constant.
Definition Definition Study of the speed of chemical reactions and other factors that affect the rate of reaction. It also extends toward the mechanism involved in the reaction.
Chapter 19, Problem 19.101P
Interpretation Introduction
Interpretation:
The molar concentration of iron ion Fe3+ when iron nitrate and KSCN solutions are mixed has to be calculated.
Concept Introduction:
Equilibrium constant(Kc):
Equilibrium constant (Kc) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction.
Consider the reaction where A reacts to give B.
aA⇌bB
Rate of forward reaction = Rate of reverse reactionkf[A]a=kr[B]b
For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check
the appropriate box.
Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below.
Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions
- just focus on the first stable product you expect to form in solution.
?
NH2
MgBr
Will the first product that forms in this reaction
create a new CC bond?
○ Yes
○ No
MgBr
?
Will the first product that forms in this reaction
create a new CC bond?
O Yes
O No
Click and drag to start drawing a
structure.
:☐
G
x
c
olo
Ar
HE
Predicting
As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule
with a new C - C bond as its major product:
H₂N
O
H
1.
?
2. H3O+
If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more
than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for
example to distinguish between major products with different stereochemistry.
0
If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank.
فا
Explanation
Check
Click and drag to start drawing a
structure.
Highlight the chirality (or stereogenic) center(s) in the given compound. A compound may have one or more stereogenic centers.
OH
OH
OH
OH
OH
OH