
Starting Out with C++ from Control Structures to Objects Plus MyLab Programming with Pearson eText -- Access Card Package (9th Edition)
9th Edition
ISBN: 9780134544847
Author: Tony Gaddis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 11PC
Program Plan Intro
File Compare
Program Plan:
Main.cpp:
- Include required header files
- Inside “main ()” function,
- Create an object “ifile” for input file stream
- Create an object “ofile” for output file stream.
- Create two class templates “q1” and “q2” to hold characters
- Declare variables “char1” and “char2”
- Till the end of file,
- Enqueue a character from file1.
- Till the end of file,
- Enqueue a character from file2.
- Close both the files.
- Assign “true” to a Boolean variable “status”.
- Do until both the queue becomes empty,
- Dequeue a character from 1st queue “q1”.
- Dequeue a character from 2nd queue “q2”.
- Check if both the characters are not equal.
- If the condition is true then, assign “false” to the Boolean variable.
- Check if the status is true,
- If the condition is true then, print “The files are identical”.
- If the condition is not true then, print “The files are not identical”.
Dynqueue.h:
- Include required header files.
- Create template class
- Declare a class named “Dynqueue”. Inside the class,
- Inside the “private” access specifier,
- Create a structure named “QueueNode”.
- Create an object for the template
- Create a pointer named “next”.
- Create two pointers named “front” and “rear”.
- Declare a variable.
- Create a structure named “QueueNode”.
- Inside “public” access specifier,
- Declare constructor and destructor.
- Declare the functions “enqueue ()”, “dequeue ()”, “isEmpty ()”, “isFull ()”, and “clear ()”.
- Inside the “private” access specifier,
- Declare template class.
- Give definition for the constructor.
- Assign the values.
- Declare template class.
- Give definition for the destructor.
- Call the function “clear ()”.
- Declare template class.
- Give function definition for “enqueue ()”.
- Make the pointer “newNode” as null.
- Assign “num” to newNode->value.
- Make newNode->next as null.
- Check whether the queue is empty using “isEmpty ()” function.
- If the condition is true then, assign newNode to “front” and “rear”.
- If the condition is not true then,
- Assign newNode to rear->next
- Assign newNode to “rear”.
- Increment the variable “numItems”.
- Declare template class.
- Give function definition for “dequeue ()”.
- Assign temp pointer as null.
- Check if the queue is empty using “isEmpty ()” function.
- If the condition is true then print “The queue is empty”.
- If the condition is not true then,
- Assign the value of front to the variable “num”.
- Make front->next as “temp”.
- Delete the front value
- Make temp as front.
- Decrement the variable “numItems”.
- Declare template class.
- Give function definition for “isEmpty ()”.
- Assign “true” to a Boolean variable
- Check if “numItems” is true.
- If the condition is true then assign “false” to the variable.
- Return the Boolean variable.
- Declare template class.
- Give function definition for “clear ()”.
- Create an object for template.
- Dequeue values from queue till the queue becomes empty using “while” condition.
- Create an object for template.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
make corrections of this program based on the errors shown. this is CIS 227 .
Create 6 users: Don, Liz, Shamir, Jose, Kate, and Sal.
Create 2 groups: marketing and research.
Add Shamir, Jose, and Kate to the marketing group.
Add Don, Liz, and Sal to the research group.
Create a shared directory for each group.
Create two files to put into each directory:
spreadsheetJanuary.txt
meetingNotes.txt
Assign access permissions to the directories:
Groups should have Read+Write access
Leave owner permissions as they are
“Everyone else” should not have any access
Submit for grade:
Screenshot of /etc/passwd contents showing your new users
Screenshot of /etc/group contents showing new groups with their members
Screenshot of shared directories you created with files and permissions
⚫ your circuit diagrams for your basic bricks, such as AND, OR, XOR gates and 1 bit multiplexers,
⚫ your circuit diagrams for your extended full adder, designed in Section 1 and
⚫ your circuit diagrams for your 8-bit arithmetical-logical unit, designed in Section 2.
1 An Extended Full Adder
In this Section, we are going to design an extended full adder circuit (EFA). That EFA takes 6 one bit inputs: aj, bj,
Cin, Tin, t₁ and to. Depending on the four possible combinations of values on t₁ and to, the EFA produces 3 one bit
outputs: sj, Cout and rout.
The EFA can be specified in principle by a truth table with 26 = 64 entries and 3 outputs. However, as the EFA
ignores certain inputs in certain cases, it is easier to work with the following overview specification, depending only
on t₁ and to in the first place:
t₁ to Description
00
Output Relationship
Ignored
Inputs
Addition Mode
2 Coutsjaj + bj + Cin, Tout= 0
Tin
0 1
Shift Left Mode
Sj = Cin,
Cout=bj, rout = 0
rin, aj
10
1 1
Shift Right…
Chapter 19 Solutions
Starting Out with C++ from Control Structures to Objects Plus MyLab Programming with Pearson eText -- Access Card Package (9th Edition)
Ch. 19.1 - Describe what LIFO means.Ch. 19.1 - What is the difference between static and dynamic...Ch. 19.1 - What are the two primary stack operations?...Ch. 19.1 - What STL types does the STL stack container adapt?Ch. 19 - Prob. 1RQECh. 19 - Prob. 2RQECh. 19 - What is the difference between a static stack and...Ch. 19 - Prob. 4RQECh. 19 - Prob. 5RQECh. 19 - The STL stack is considered a container adapter....
Ch. 19 - What types may the STL stack be based on? By...Ch. 19 - Prob. 8RQECh. 19 - Prob. 9RQECh. 19 - Prob. 10RQECh. 19 - Prob. 11RQECh. 19 - Prob. 12RQECh. 19 - Prob. 13RQECh. 19 - Prob. 14RQECh. 19 - Prob. 15RQECh. 19 - Prob. 16RQECh. 19 - The STL stack container is an adapter for the...Ch. 19 - Prob. 18RQECh. 19 - Prob. 19RQECh. 19 - Prob. 20RQECh. 19 - Prob. 21RQECh. 19 - Prob. 22RQECh. 19 - Prob. 23RQECh. 19 - Prob. 24RQECh. 19 - Prob. 25RQECh. 19 - Prob. 26RQECh. 19 - Write two different code segments that may be used...Ch. 19 - Prob. 28RQECh. 19 - Prob. 29RQECh. 19 - Prob. 30RQECh. 19 - Prob. 31RQECh. 19 - Prob. 32RQECh. 19 - Prob. 1PCCh. 19 - Prob. 2PCCh. 19 - Prob. 3PCCh. 19 - Prob. 4PCCh. 19 - Prob. 5PCCh. 19 - Dynamic String Stack Design a class that stores...Ch. 19 - Prob. 7PCCh. 19 - Prob. 8PCCh. 19 - Prob. 9PCCh. 19 - Prob. 10PCCh. 19 - Prob. 11PCCh. 19 - Inventory Bin Stack Design an inventory class that...Ch. 19 - Prob. 13PCCh. 19 - Prob. 14PCCh. 19 - Prob. 15PC
Knowledge Booster
Similar questions
- Show the correct stereochemistry when needed!! mechanism: mechanism: Show the correct stereochemistry when needed!! Br NaOPh diethyl ether substitutionarrow_forwardIn javaarrow_forwardKeanPerson #keanld:int #keanEmail:String #firstName:String #lastName: String KeanAlumni -yearOfGraduation: int - employmentStatus: String + KeanPerson() + KeanPerson(keanld: int, keanEmail: String, firstName: String, lastName: String) + getKeanld(): int + getKeanEmail(): String +getFirstName(): String + getLastName(): String + setFirstName(firstName: String): void + setLastName(lastName: String): void +toString(): String +getParkingRate(): double + KeanAlumni() + KeanAlumni(keanld: int, keanEmail: String, firstName: String, lastName: String, yearOfGraduation: int, employmentStatus: String) +getYearOfGraduation(): int + setYearOfGraduation(yearOfGraduation: int): void +toString(): String +getParkingRate(): double In this question, write Java code to Create and Test the superclass: Abstract KeanPerson and a subclass of the KeanPerson: KeanAlumni. Task 1: Implement Abstract Class KeanPerson using UML (10 points) • Four data fields • Two constructors (1 default and 1 constructor with all…arrow_forward
- Plz correct answer by best experts...??arrow_forwardQ3) using the following image matrix a- b- 12345 6 7 8 9 10 11 12 13 14 15 1617181920 21 22 23 24 25 Using direct chaotic one dimension method to convert the plain text to stego text (hello ahmed)? Using direct chaotic two-dimension method to convert the plain text to stego text?arrow_forward: The Multithreaded Cook In this lab, we'll practice multithreading. Using Semaphores for synchronization, implement a multithreaded cook that performs the following recipe, with each task being contained in a single Thread: 1. Task 1: Cut onions. a. Waits for none. b. Signals Task 4 2. Task 2: Mince meat. a. Waits for none b. Signals Task 4 3. Task 3: Slice aubergines. a. Waits for none b. Signals Task 6 4. Task 4: Make sauce. a. Waits for Task 1, and 2 b. Signals Task 6 5. Task 5: Finished Bechamel. a. Waits for none b. Signals Task 7 6. Task 6: Layout the layers. a. Waits for Task 3, and 4 b. Signals Task 7 7. Task 7: Put Bechamel and Cheese. a. Waits for Task 5, and 6 b. Signals Task 9 8. Task 8: Turn on oven. a. Waits for none b. Signals Task 9 9. Task 9: Cook. a. Waits for Task 7, and 8 b. Signals none At the start of each task (once all Semaphores have been acquired), print out a string of the task you are starting, sleep for 2-11 seconds, then print out a string saying that you…arrow_forward
- Programming Problems 9.28 Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: ./addresses 19986 Your program would output: The address 19986 contains: page number = 4 offset = 3602 Writing this program will require using the appropriate data type to store 32 bits. We encourage you to use unsigned data types as well. Programming Projects Contiguous Memory Allocation In Section 9.2, we presented different algorithms for contiguous memory allo- cation. This project will involve managing a contiguous region of memory of size MAX where addresses may range from 0 ... MAX - 1. Your program must respond to four different requests: 1. Request for a contiguous block of memory 2. Release of a contiguous block of memory 3. Compact unused holes of memory into one single block 4.…arrow_forwardusing r languagearrow_forwardProgramming Problems 9.28 Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: ./addresses 19986 Your program would output: The address 19986 contains: page number = 4 offset = 3602 Writing this program will require using the appropriate data type to store 32 bits. We encourage you to use unsigned data types as well. Programming Projects Contiguous Memory Allocation In Section 9.2, we presented different algorithms for contiguous memory allo- cation. This project will involve managing a contiguous region of memory of size MAX where addresses may range from 0 ... MAX - 1. Your program must respond to four different requests: 1. Request for a contiguous block of memory 2. Release of a contiguous block of memory 3. Compact unused holes of memory into one single block 4.…arrow_forward
- using r languagearrow_forwardWrite a function to compute a Monte Carlo estimate of the Beta(3, 3) cdf, and use the function to estimate F(x) for x = 0.1,0.2,...,0.9. Compare the estimates with the values returned by the pbeta function in R.arrow_forwardWrite a function to compute a Monte Carlo estimate of the Gamma(r = 3, λ = 2) cdf, and use the function to estimate F(x) for x = 0.2, 0.4, . . . , 2.0. Compare the estimates with the values returned by the pgamma function in R.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage

EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,