Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18.3, Problem 18.3GI
The same amount of heat flows into equal volumes of nitrogen (N2) and nitrogen dioxide (NO2), while both are held at constant pressure. Is the resulting temperature rise (a) greater for N2. (b) the same for both, or (c) greater for NO2?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the summer of 1958 in St. Petersburg, Florida, a new sidewalk was poured near the childhood home of one of the authors. No expansion joints were supplied, and by mid-July the sidewalk had been completely destroyed by thermal expansion and had to be replaced, this time with the important addition of expansion joints! This event is modeled here.
A slab of concrete 4.00 cm thick, 1.00 m long, and 1.00 m wide is poured for a sidewalk at an ambient temperature of 25.0°C and allowed to set. The slab is exposed to direct sunlight and placed in a series of such slabs without proper expansion joints, so linear expansion is prevented. (a) Using the linear expansion equation (Eq. 10.4), eliminate Δ L from the equation for compressive stress and strain (Eq. 9.3). (b) Use the expression found in part (a) to eliminate Δ T from Equation 11.3, obtaining a symbolic equation for thermal energy transfer Q. (c) Compute the mass of the concrete slab given that its density is 2.40 × 103 kg/m3. (d)…
During a cold winter day, wind at 55 km/h is blowing parallel to a 4-m-high and 10-m-long wall of a house. If the air outside is at 5°C and the surface temperature of the wall is 12°C, determine the rate of heat loss from that wall by convection. What would your answer be if the wind velocity was doubled?
Two 5-cm-diameter, 15-cm-long aluminum bars (k = 176 W/m·K) with ground surfaces are pressed against each other with a pressure of 20 atm. The bars are enclosed in an insulation sleeve and, thus, heat transfer from the lateral surfaces is negligible. If the top and bottom surfaces of the two-bar system are maintained at temperatures of 150°C and 20°C, respectively, determine (a) the rate of heat transfer along the cylinders under steady conditions and (b) the temperature drop at the interface.
Chapter 18 Solutions
Essential University Physics (3rd Edition)
Ch. 18.2 - Two identical gas-cylinder systems are taken from...Ch. 18.2 - Name the basic thermodynamic process involved when...Ch. 18.3 - The same amount of heat flows into equal volumes...Ch. 18 - Prob. 1FTDCh. 18 - Prob. 2FTDCh. 18 - Prob. 3FTDCh. 18 - Why cant an irreversible process be described by a...Ch. 18 - Are the initial and final equilibrium states of an...Ch. 18 - Does the first law of thermodynamics apply to...Ch. 18 - Prob. 7FTD
Ch. 18 - Figure 18.18 shows two processes, A and B. that...Ch. 18 - When you let air out of a tire, the air seems...Ch. 18 - Blow on the back of your hand with your mouth wide...Ch. 18 - You boil water in an open pan. Of which of the...Ch. 18 - Three identical gas-cylinder systems are...Ch. 18 - Prob. 13FTDCh. 18 - In what sense can a gas of diatomic molecules be...Ch. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - A 40-W heat source is applied to a gas sample for...Ch. 18 - Find the rate of heat flow into a system whose...Ch. 18 - In a certain automobile engine, 17% of the total...Ch. 18 - An ideal gas expands from the state (p1, V1) to...Ch. 18 - Repeat Exercise 20 for a process that follows the...Ch. 18 - A balloon contains 0.30 mol of helium. It rises,...Ch. 18 - The balloon of Exercise 22 starts at 100 kPa...Ch. 18 - How much work does it take to compress 2.5 mol of...Ch. 18 - By what factor must the volume of a gas with =...Ch. 18 - Prob. 26ECh. 18 - A carbon-sequestration scheme calls for...Ch. 18 - A gas mixture contains 2.5 mol of O2 and 3.0 mol...Ch. 18 - A mixture of monatomic and diatomic gases has...Ch. 18 - What should be the approximate specific-heat ratio...Ch. 18 - Prob. 31ECh. 18 - An ideal gas expands to 10 times its original...Ch. 18 - During cycling, the human body typically releases...Ch. 18 - A 0.25-mol sample of ideal gas initially occupies...Ch. 18 - As the heart beats, blood pressure in an artery...Ch. 18 - It takes 1.5 kJ to compress a gas isothermally to...Ch. 18 - A gas undergoes an adiabatic compression during...Ch. 18 - A gas with = 1.40 occupies 6.25 L when its at...Ch. 18 - A gas sample undergoes the cyclic process ABCA...Ch. 18 - Prob. 40PCh. 18 - A gasoline engine has compression ratio 8.5 (sec...Ch. 18 - By what factor must the volume of a gas with =...Ch. 18 - Volvos B5340 engine, used in the V70 series cars,...Ch. 18 - A research balloon is prepared for launch by...Ch. 18 - Prob. 45PCh. 18 - By what factor does the internal energy of an...Ch. 18 - An ideal monatomic gas is compressed to half its...Ch. 18 - A gas expands isothermally from state A to state...Ch. 18 - A 3.50-mol sample of ideal gas with molar specific...Ch. 18 - Prove that the slope of an adiabat at a given...Ch. 18 - An ideal gas with = 1.67 starts at point A in...Ch. 18 - The gas of Example 18.4 starts at state A in Fig....Ch. 18 - The gas of Example 18.4 starts at state A in Fig....Ch. 18 - A 25-L sample of ideal gas with = 1.67 is at 250...Ch. 18 - Prob. 55PCh. 18 - A 25-L sample of ideal gas with = 1.67 is at 250...Ch. 18 - Youre the product safety officer for a company...Ch. 18 - Figure 18.22 shows data and a fit curve from an...Ch. 18 - External forces compress 21 mol of ideal monatomic...Ch. 18 - A gas with = 7/5 is at 273 K when its compressed...Ch. 18 - An ideal gas with = 1.3 is initially at 273 K and...Ch. 18 - The curved path in Fig. 18.23 lies on the 350-K...Ch. 18 - Repeat part (a) of Problem 62 for the path ACDA in...Ch. 18 - A gas mixture contains monatomic argon and...Ch. 18 - How much of a triatomic gas with Cv = 3R would you...Ch. 18 - An 8.5-kg rock at 0C is dropped into a...Ch. 18 - A piston-cylinder arrangement containing 0.30 mol...Ch. 18 - Experimental studies show that the pV curve for a...Ch. 18 - Show that the application of Equation 18.3 to an...Ch. 18 - A horizontal piston-cylinder system containing n...Ch. 18 - Prob. 71PCh. 18 - The table below shows measured values of pressure...Ch. 18 - In a reversible process, a volume of air V0= 17 m3...Ch. 18 - A real gas is more accurately described using the...Ch. 18 - Repeat Exercise 20 for an expansion along the path...Ch. 18 - The adiabatic lapse rate is the rate at which air...Ch. 18 - The nuclear power plant at which youre the public...Ch. 18 - Prob. 78PCh. 18 - One scheme for reducing greenhouse-gas emissions...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...Ch. 18 - Warm winds called Chinooks (a Native-American term...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1.14 Classify each of the following as a pure substance or a mixture. If a mixture, indicate whether it is homo...
Chemistry: The Central Science (14th Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology in Focus (2nd Edition)
26. The earth’s radius is about 4000 miles. Kampala, the capital of Uganda, and Singapore are both nearly on t...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Another cross in Drosophila involved the recessive, X-linked genes yellow (y), white (w), and cut (ct). A yello...
Concepts of Genetics (12th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
13.2 Describe and give an example (real or hypothetical) of each of the following:
upstream activator sequence...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardAn aluminum rod 0.500 m in length and with a cross sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 3(H) K. (a) If one-halt of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool, (b) If the circular surface of the upper end of the rod is maintained at 300 K. what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 YV/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forward(1a). Black body has emissivity value of 1, but in reality, the emissivity of real objects is less than 1. Why?e (1b). The tungsten sphere of 240 mm radius is at a temperature of 25°C. If the power radiated by sphere is 91 W, calculate its emissivity value? (1c).If the same sphere is enclosed in room whose walls are kept at -7°C, what is the net flow rate of energy out of the sphere in Watts (W)arrow_forward
- In the American Southwest, the temperature in a closed car parked in sunlight during the summer can be high enough to burn flesh. Suppose a bottle of water at a refrigerator temperature of 5.00C is opened, then closed, and then left in a closed car with an internal temperature of 75.0C. Neglecting the thermal expansion of the water and the bottle, find the pressure in the air pocket trapped in the bottle. (The pressure can be enough to push the bottle cap past the threads that are intended to keep the bottle closed.)arrow_forwardYou buy an "airtight" bag of potato chips packaged at sea level, and take the chips on an airplane flight. When you take the potato chips out of your "carry-on" bag, you notice it has noticeably "puffed up." Airplane cabins are typically pressurized at 0.90 atm, and assuming the temperature inside an airplane is about the same as inside a potato chip processing plant, by what percentage has the bag "puffed up" in comparison to when it was packaged? Express your answer using two significant figures. (V2−V1)/V1= ?arrow_forwardYou buy an “airtight” bag of potato chips packaged at sea level, and take the chips on an airplane flight. When you take the potato chips out of your “carry-on”bag, you notice it has noticeably “puffed up.” Airplane cabins are typically pressurized at 0.80 atm, and assuming the temperature inside an airplane is about the same as inside a potato chip processing plant, by what percentage has the bag “puffed up” in comparison to when it was packaged? Given : Required : Illustration: Solution: final answer:arrow_forward
- You buy an "airtight" bag of potato chips packaged at sea level, and take the chips on an airplane flight. When you take the potato chips out of your "carry-on" bag, you notice it has noticeably "puffed up." Airplane cabins are typically pressurized at 0.87 atm, and assuming the temperature inside an airplane is about the same as inside a potato chip processing plant, by what percentage has the bag "puffed up" in comparison to when it was packaged?arrow_forwardSoon after the Earth formed, heat released by the decay of radioactive elements raised the average internal temperature from 300 to 3000 K, at about which value it remains today. Assuming an average coefficient of volume expansion of 3.0 x 10-5 K -1 , by how much has the radius of the Earth increased since its formation? (Let r = 6400km be the present radius of the Earth.)arrow_forwardäbäi 33 Q2: An industrial freezer is designed to operate with an internal air temperature of -20 oC when the external air temperature is 250C and the internal and external heat transfer coefficients are 12 W/m2 K and 8 W/m2 K, respectively. The walls of the freezer are composite construction, comprising of an inner layer of plastic (k = 1 W/m K, and thickness of 3 mm), and an outer layer of stainless steel (k = 16 W/m K, and thickness of 1 mm). Sandwiched between these two layers is a layer of insulation material with k = 0.07 W/m K. Find the width of the insulation that is required to reduce the convective heat * loss to 15 W/m2arrow_forward
- HC-3 A Styrofoam cooler has dimensions 25 cm x 35 cm x 55 cm, and has walls that are 1.5 cm thick. The thermal conductivity of Styrofoam is 0.048 W m-¹ K-1. The temperature outside of the cooler is 34 °C. If 9.5 kg of ice at the melting point (0 °C) is placed in the cooler with the top lid closed, how long will it take (in hours) for all of the ice to melt?arrow_forward(1a). Black body has emissivity value of 1, but in reality, the emissivity of real objects is less than 1. Why?? (1b). The tungsten sphere of 250 mm radius is at a temperature of 35°C. If the power radiated by sphere is 89 W, calculate its emissivity value? (1c).If the same sphere is enclosed in room whose walls are kept at -11°C, what is the net flow rate of energy out of the sphere in Watts (W)arrow_forward- Your answer is partially correct. An aluminum cup of 140 cm3 capacity is completely filled with glycerin at 25°C. How much glycerin will spill out of the cup if the temperature of both the cup and glycerin is increased to 30°C? (The linear expansion coefficient of aluminum is 23 x 10-6 1/C°. The coefficient of volume expansion of glycerin is 5.1 x 10-4 1/C.) Number i Units cm^3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY