Mylab Math With Pearson Etext -- 18 Week Standalone Access Card -- For Basic Technical Mathematics With Calculus
11th Edition
ISBN: 9780135902912
Author: Allyn J. Washington
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.2, Problem 24E
To determine
The required value by setting up the general equation and evaluating.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 4
(a) The following matrices represent linear maps on R² with respect to an
orthonormal basis:
=
[1/√5 2/√5
[2/√5 -1/√5]
"
[1/√5 2/√5]
A =
B =
[2/√5 1/√5] 1
C =
D =
=
=
[ 1/3/5 2/35]
1/√5 2/√5
-2/√5 1/√5'
For each of the matrices A, B, C, D, state whether it represents a self-adjoint
linear map, an orthogonal linear map, both, or neither.
(b) For the quadratic form
q(x, y, z) = y² + 2xy +2yz
over R, write down a linear change of variables to u, v, w such that q in these
terms is in canonical form for Sylvester's Law of Inertia.
[6]
[4]
part b please
Question 5
(a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the
matrix
a cl
|df
equals 3 and the determinant of
determinant of the matrix
a+3b cl
d+3e f
ГЪ
e
[ c ] equals 2. Compute the
[5]
(b) Calculate the adjugate Adj (A) of the 2 × 2 matrix
[1 2
A
=
over R.
(c) Working over the field F3 with 3 elements, use row and column operations to put
the matrix
[6]
0123]
A
=
3210
into canonical form for equivalence and write down the canonical form. What is
the rank of A as a matrix over F3?
4
Chapter 18 Solutions
Mylab Math With Pearson Etext -- 18 Week Standalone Access Card -- For Basic Technical Mathematics With Calculus
Ch. 18.1 - Practice Exercise
In a certain electric field a...Ch. 18.1 - Prob. 2PECh. 18.1 - Prob. 1ECh. 18.1 - Prob. 2ECh. 18.1 - Prob. 3ECh. 18.1 - Prob. 4ECh. 18.1 - Prob. 5ECh. 18.1 - Prob. 6ECh. 18.1 - Prob. 7ECh. 18.1 - Prob. 8E
Ch. 18.1 - Prob. 9ECh. 18.1 - Prob. 10ECh. 18.1 - Prob. 11ECh. 18.1 - Prob. 12ECh. 18.1 - Prob. 13ECh. 18.1 - Prob. 14ECh. 18.1 - Prob. 15ECh. 18.1 - Prob. 16ECh. 18.1 - In Exercises 11–26, find the required...Ch. 18.1 - Prob. 18ECh. 18.1 - In Exercises 11–26, find the required...Ch. 18.1 - Prob. 20ECh. 18.1 - Prob. 21ECh. 18.1 - Prob. 22ECh. 18.1 - Prob. 23ECh. 18.1 - Prob. 24ECh. 18.1 - Prob. 25ECh. 18.1 - Prob. 26ECh. 18.1 - Prob. 27ECh. 18.1 - Prob. 28ECh. 18.1 - Prob. 29ECh. 18.1 - Prob. 30ECh. 18.1 - Prob. 31ECh. 18.1 - Prob. 32ECh. 18.1 - Prob. 33ECh. 18.1 - Prob. 34ECh. 18.1 - Prob. 35ECh. 18.1 - Prob. 36ECh. 18.1 - Prob. 37ECh. 18.1 - Prob. 38ECh. 18.1 - Prob. 39ECh. 18.1 - Prob. 40ECh. 18.1 - Prob. 41ECh. 18.1 - Prob. 42ECh. 18.1 - Prob. 43ECh. 18.1 - Prob. 44ECh. 18.1 - Prob. 45ECh. 18.1 - Prob. 46ECh. 18.1 - Prob. 47ECh. 18.1 - Prob. 48ECh. 18.1 - Prob. 49ECh. 18.1 - Prob. 50ECh. 18.1 - Prob. 51ECh. 18.1 - Prob. 52ECh. 18.2 - Express the relationship that y varies directly as...Ch. 18.2 - Prob. 2PECh. 18.2 - Prob. 3PECh. 18.2 - Prob. 4PECh. 18.2 - Prob. 1ECh. 18.2 - Prob. 2ECh. 18.2 - Prob. 3ECh. 18.2 - Prob. 4ECh. 18.2 - Prob. 5ECh. 18.2 - Prob. 6ECh. 18.2 - Prob. 7ECh. 18.2 - Prob. 8ECh. 18.2 - Prob. 9ECh. 18.2 - Prob. 10ECh. 18.2 - Prob. 11ECh. 18.2 - Prob. 12ECh. 18.2 - Prob. 13ECh. 18.2 - Prob. 14ECh. 18.2 - Prob. 15ECh. 18.2 - Prob. 16ECh. 18.2 - Prob. 17ECh. 18.2 - In Exercises 17–20, give the specific equation...Ch. 18.2 - Prob. 19ECh. 18.2 - Prob. 20ECh. 18.2 - Prob. 21ECh. 18.2 - Prob. 22ECh. 18.2 - Prob. 23ECh. 18.2 - Prob. 24ECh. 18.2 - Prob. 25ECh. 18.2 - Prob. 26ECh. 18.2 - Prob. 27ECh. 18.2 - Prob. 28ECh. 18.2 - Prob. 29ECh. 18.2 - Prob. 30ECh. 18.2 - Prob. 31ECh. 18.2 - Prob. 32ECh. 18.2 - Prob. 33ECh. 18.2 - Prob. 34ECh. 18.2 - Prob. 35ECh. 18.2 - Prob. 36ECh. 18.2 - Prob. 37ECh. 18.2 - Prob. 38ECh. 18.2 - Prob. 39ECh. 18.2 - Prob. 40ECh. 18.2 - Prob. 41ECh. 18.2 - Prob. 42ECh. 18.2 - Prob. 43ECh. 18.2 - Prob. 44ECh. 18.2 - In Exercises 31–64, solve the given applied...Ch. 18.2 - Prob. 46ECh. 18.2 - Prob. 47ECh. 18.2 - Prob. 48ECh. 18.2 - Prob. 49ECh. 18.2 - Prob. 50ECh. 18.2 - Prob. 51ECh. 18.2 - Prob. 52ECh. 18.2 - Prob. 53ECh. 18.2 - Prob. 54ECh. 18.2 - Prob. 55ECh. 18.2 - Prob. 56ECh. 18.2 - Prob. 57ECh. 18.2 - Prob. 58ECh. 18.2 - Prob. 59ECh. 18.2 - Prob. 60ECh. 18.2 - Prob. 61ECh. 18.2 - Prob. 62ECh. 18.2 - Prob. 63ECh. 18.2 - Prob. 64ECh. 18 - Prob. 1RECh. 18 - Prob. 2RECh. 18 - Prob. 3RECh. 18 - Prob. 4RECh. 18 - Prob. 5RECh. 18 - Prob. 6RECh. 18 - Prob. 7RECh. 18 - Prob. 8RECh. 18 - Prob. 9RECh. 18 - Prob. 10RECh. 18 - Prob. 11RECh. 18 - Prob. 12RECh. 18 - Prob. 13RECh. 18 - Prob. 14RECh. 18 - Prob. 15RECh. 18 - Prob. 16RECh. 18 - Prob. 17RECh. 18 - Prob. 18RECh. 18 - Prob. 19RECh. 18 - Prob. 20RECh. 18 - Prob. 21RECh. 18 - In Exercises 21–36, answer the given questions by...Ch. 18 - Prob. 23RECh. 18 - Prob. 24RECh. 18 - Prob. 25RECh. 18 - Prob. 26RECh. 18 - Prob. 27RECh. 18 - Prob. 28RECh. 18 - Prob. 29RECh. 18 - Prob. 30RECh. 18 - Prob. 31RECh. 18 - Prob. 32RECh. 18 - Prob. 33RECh. 18 - Prob. 34RECh. 18 - Prob. 35RECh. 18 - Prob. 36RECh. 18 - Prob. 37RECh. 18 - Prob. 38RECh. 18 - Prob. 39RECh. 18 - Prob. 40RECh. 18 - Prob. 41RECh. 18 - Prob. 42RECh. 18 - Prob. 43RECh. 18 - Prob. 44RECh. 18 - Prob. 45RECh. 18 - Prob. 46RECh. 18 - Prob. 47RECh. 18 - Prob. 48RECh. 18 - Prob. 49RECh. 18 - Prob. 50RECh. 18 - Prob. 51RECh. 18 - Prob. 52RECh. 18 - Prob. 53RECh. 18 - Prob. 54RECh. 18 - Prob. 55RECh. 18 - In Exercises 41–82, solve the given applied...Ch. 18 - Prob. 57RECh. 18 - In Exercises 41–82, solve the given applied...Ch. 18 - Prob. 59RECh. 18 - Prob. 60RECh. 18 - Prob. 61RECh. 18 - Prob. 62RECh. 18 - Prob. 63RECh. 18 - Prob. 64RECh. 18 - Prob. 65RECh. 18 - Prob. 66RECh. 18 - Prob. 67RECh. 18 - Prob. 68RECh. 18 - Prob. 69RECh. 18 - Prob. 70RECh. 18 - Prob. 71RECh. 18 - Prob. 72RECh. 18 - Prob. 73RECh. 18 - Prob. 74RECh. 18 - Prob. 75RECh. 18 - Prob. 76RECh. 18 - Prob. 77RECh. 18 - Prob. 78RECh. 18 - Prob. 79RECh. 18 - Prob. 80RECh. 18 - Prob. 81RECh. 18 - Prob. 82RECh. 18 - Prob. 83RECh. 18 - Prob. 1PTCh. 18 - Prob. 2PTCh. 18 - Prob. 3PTCh. 18 - Prob. 4PTCh. 18 - Prob. 5PTCh. 18 - Prob. 6PTCh. 18 - Prob. 7PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Question 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardGood explanation it sure experts solve itarrow_forwardBest explains it not need guidelines okkarrow_forward
- Task number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardTask number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardActiv Determine compass error using amplitude (Sun). Minimum number of times that activity should be performed: 3 (1 each phase) Sample calculation (Amplitude- Sun): On 07th May 2006 at Sunset, a vessel in position 10°00'N 010°00'W observed the Sun bearing 288° by compass. Find the compass error. LMT Sunset: LIT: (+) 00d 07d 18h 00h 13m 40m UTC Sunset: 07d 18h 53m (added- since longitude is westerly) Declination (07d 18h): N 016° 55.5' d (0.7): (+) 00.6' Declination Sun: N 016° 56.1' Sin Amplitude = Sin Declination/Cos Latitude = Sin 016°56.1'/ Cos 10°00' = 0.295780189 Amplitude=W17.2N (The prefix of amplitude is named easterly if body is rising, and westerly if body is setting. The suffix is named same as declination) True Bearing=287.2° Compass Bearing= 288.0° Compass Error = 0.8° Westarrow_forward
- Only sure experts solve it correct complete solutions okkarrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
- 13. In 2000, two organizations conducted surveys to ascertain the public's opinion on banning gay men from serving in leadership roles in the Boy Scouts.• A Pew poll asked respondents whether they agreed with "the recent decision by the Supreme Court" that "the Boy Scouts of America have a constitutional right to block gay men from becoming troop leaders."A Los Angeles Times poll asked respondents whether they agreed with the following statement: "A Boy Scout leader should be removed from his duties as a troop leader if he is found out to be gay, even if he is considered by the Scout organization to be a model Boy Scout leader."One of these polls found 36% agreement; the other found 56% agreement. Which of the following statements is true?A) The Pew poll found 36% agreement, and the Los Angeles Times poll found 56% agreement.B) The Pew poll includes a leading question, while the Los Angeles Times poll uses neutral wording.C) The Los Angeles Times Poll includes a leading question, while…arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forwardSimplify the below expression. 3 - (-7)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY