Physics
Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 86P

(a)

To determine

Find the initial energy stored in the capacitor.

(a)

Expert Solution
Check Mark

Answer to Problem 86P

The initial energy stored in the capacitor is 900 J.

Explanation of Solution

Write the equation for energy.

U0=12CV02 (I)

Here, U0 is the initial energy, C is the capacitance and V0 is the initial voltage.

Conclusion:

Substitute 6.0×103 V for V0 and 50.0×106 F for C in equation I.

U0=12(50.0×106 F)(6.0×103 V)2=900 J

Therefore, the initial energy stored in the capacitor is 900 J.

(b)

To determine

Find the initial current through the patient.

(b)

Expert Solution
Check Mark

Answer to Problem 86P

The initial current through the patient is 25 A.

Explanation of Solution

Write the equation for current,

I0=V0R (II)

Here, R is the resistance, V0 is the initial voltage and I0 is the initial current

Conclusion:

Substitute 6.0×103 V for V0 and 240 Ω for R in equation II.

I0=6.0×103 V240 Ω=25 A

Therefore, the initial current through the patient is 25 A.

(c)

To determine

Find the energy dissipated in the patient during 1.0 ms of time.

(c)

Expert Solution
Check Mark

Answer to Problem 86P

The energy dissipated in the patient during 1.0 ms of time is 140 J.

Explanation of Solution

Write the equation for voltage with respect to time,

VC=V0et/τ (III)

Here, VC  is the voltage across the capacitor, V0 is the initial voltage, t is the time and τ is the time constant.

Write the equation for energy.

U=12CVC2 (IV)

Here, U is the energy, C is the capacitance and VC is the voltage across the capacitor.

Then, the energy dissipated in the patient is,

U0U

Substitute equation III in IV and then in the above equation.

U0U=U012C(V0et/τ)2=U0(1e2t/RC) (V)

Conclusion:

Substitute 900 J for U0 , 0.0010 s for t , 240 Ω for R and 50.0×106 F for C in equation V.

U0U=(900 J)(1e2(0.0010 s)/(240 Ω)(50.0×106 F))=140 J

Therefore, the energy dissipated in the patient during 1.0 ms of time is 140 J.

(d)

To determine

Compare the average power supplied by the power source with the power delivered by the patient.

(d)

Expert Solution
Check Mark

Answer to Problem 86P

The average power supplied by power source is 0.0033 times that delivered to the patient.

Explanation of Solution

Write the average power by source and patient the divide them.

PsourcePpatient=U0ΔtsourceUΔtpatient=U0ΔtpatientUΔtsource (VI)

Conclusion:

Substitute 900 J for U0 , 138 J for U, 1.0×103 s for Δtpatient and 2.0 s for Δtsource in equation VI.

PsourcePpatient=(900 J)(1.0×103 s)(138 J)(2.0 s)=0.0033

Therefore, the average power supplied by power source is 0.0033 times that delivered to the patient.

(e)

To determine

Why the capacitors are used in the defibrillator.

(e)

Expert Solution
Check Mark

Answer to Problem 86P

The capacitors can produce much higher burst of current to the patient than the power source.

Explanation of Solution

The capacitor used in the defibrillator can produces much higher burst of current to the patient when compared to the burst produces by the power source.

Conclusion:

Therefore, the capacitors are used to produce burst in current to the patients.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Blue light has a wavelength of 485 nm. What is the frequency of a photon of blue light?         Question 13 Question 13 What is the wavelength of radiofrequency broadcast of 104 MHz?       Question 14 Question 14 1 Point 3. The output intensity from an x-ray exposure is 4 mGy at 90 cm. What will the intensity of the exposure be at 180 cm?        Question 15 Question 15 1 Point What is the frequency of an 80 keV x-ray?
Under what condition is IA - BI = A + B? Vectors À and B are in the same direction. Vectors À and B are in opposite directions. The magnitude of vector Vectors À and 官 B is zero. are in perpendicular directions.
For the vectors shown in the figure, express vector 3 in terms of vectors M and N. M S =-M+ Ň == S=м- Ñ S = M +Ñ +N

Chapter 18 Solutions

Physics

Ch. 18.6 - Prob. 18.7PPCh. 18.7 - Prob. 18.8PPCh. 18.8 - Prob. 18.9PPCh. 18.9 - Prob. 18.10PPCh. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - 6. A friend says that electric current “follows...Ch. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - Prob. 10CQCh. 18 - Prob. 11CQCh. 18 - Prob. 12CQCh. 18 - Prob. 13CQCh. 18 - Prob. 14CQCh. 18 - Prob. 15CQCh. 18 - Prob. 16CQCh. 18 - Prob. 17CQCh. 18 - Prob. 18CQCh. 18 - 19. When batteries are connected in parallel, they...Ch. 18 - 20. (a) If the resistance R1 decreases, what...Ch. 18 - Prob. 21CQCh. 18 - Prob. 22CQCh. 18 - Prob. 23CQCh. 18 - Prob. 1MCQCh. 18 - Prob. 2MCQCh. 18 - Prob. 3MCQCh. 18 - Prob. 4MCQCh. 18 - Prob. 5MCQCh. 18 - Prob. 6MCQCh. 18 - Prob. 7MCQCh. 18 - Prob. 8MCQCh. 18 - Prob. 9MCQCh. 18 - Prob. 10MCQCh. 18 - Prob. 1PCh. 18 - 2. The current in a wire is 0.500 A. (a) How much...Ch. 18 - Prob. 3PCh. 18 - Prob. 4PCh. 18 - 5. The current in the electron beam of a computer...Ch. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - Prob. 16PCh. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - 20. A copper wire of cross-sectional area 1.00 mm2...Ch. 18 - 21. An aluminum wire of diameter 2.6 mm carries a...Ch. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - 35. A battery has a terminal voltage of 12.0 V...Ch. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - Prob. 63PCh. 18 - Prob. 64PCh. 18 - Prob. 65PCh. 18 - Prob. 66PCh. 18 - Prob. 67PCh. 18 - Prob. 68PCh. 18 - Prob. 69PCh. 18 - Prob. 70PCh. 18 - Prob. 71PCh. 18 - 72. At what rate is energy dissipated in the 4.00...Ch. 18 - Prob. 73PCh. 18 - Prob. 74PCh. 18 - Prob. 75PCh. 18 - Prob. 76PCh. 18 - Prob. 77PCh. 18 - Prob. 78PCh. 18 - Prob. 79PCh. 18 - Prob. 80PCh. 18 - Prob. 81PCh. 18 - Prob. 83PCh. 18 - Prob. 82PCh. 18 - Prob. 85PCh. 18 - Prob. 84PCh. 18 - Prob. 90PCh. 18 - Prob. 86PCh. 18 - Prob. 87PCh. 18 - Prob. 88PCh. 18 - In the circuit of Problem 88, at what time after...Ch. 18 - Prob. 91PCh. 18 - Prob. 92PCh. 18 - Prob. 94PCh. 18 - Prob. 93PCh. 18 - Prob. 95PCh. 18 - Prob. 96PCh. 18 - Prob. 97PCh. 18 - Prob. 98PCh. 18 - Prob. 99PCh. 18 - Prob. 100PCh. 18 - Prob. 101PCh. 18 - Prob. 102PCh. 18 - Prob. 103PCh. 18 - Prob. 104PCh. 18 - Prob. 106PCh. 18 - Prob. 105PCh. 18 - Prob. 107PCh. 18 - Prob. 108PCh. 18 - Prob. 109PCh. 18 - Prob. 110PCh. 18 - A1 and A2 represent ammeters with negligible...Ch. 18 - Prob. 112PCh. 18 - Prob. 114PCh. 18 - Prob. 113PCh. 18 - Prob. 116PCh. 18 - Prob. 115PCh. 18 - Prob. 118PCh. 18 - Prob. 117PCh. 18 - Prob. 120PCh. 18 - Prob. 119PCh. 18 - Prob. 122PCh. 18 - Prob. 121PCh. 18 - Prob. 124PCh. 18 - Prob. 123PCh. 18 - Prob. 126PCh. 18 - Prob. 125PCh. 18 - Prob. 128PCh. 18 - Prob. 127PCh. 18 - Prob. 130PCh. 18 - Prob. 129PCh. 18 - Prob. 134PCh. 18 - Problems 131 and 132. A potentiometer is a...Ch. 18 - Prob. 132PCh. 18 - Prob. 133PCh. 18 - Prob. 136PCh. 18 - Prob. 135PCh. 18 - Prob. 138PCh. 18 - Prob. 137PCh. 18 - Prob. 139PCh. 18 - Poiseuilles law [Eq. (9-41)] gives the volume flow...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY