PHYSICS
PHYSICS
5th Edition
ISBN: 2818440038631
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 73P

(a)

To determine

Find the equivalent resistance.

(a)

Expert Solution
Check Mark

Answer to Problem 73P

The equivalent resistance is 35.0 Ω.

Explanation of Solution

The sum of individual resistance connected in series and reciprocal of resistance connected in parallel will give the equivalent resistance.

From the given circuit, the resistor R2, R3  and R4  are in parallel then the equivalent resistance is,

1R'=1R2+1R3+1R4R'=(1R2+1R3+1R4)1

This resistance is in series with the R1 and R5 , then the final equivalent resistance is,

Req=R1+R'+R5

Substitute the value of R' in the above equation.

Req=R1+(1R2+1R3+1R4)1+R5

Conclusion:

Substitute, 15.0 Ω for R1 , 40.0 Ω for R2 , 20.0 Ω for R3 , 40.0 Ω for R4 ,and 10.0 Ω for R5 in the above equation.

Req=15.0 Ω+(140.0 Ω+120.0 Ω+140.0 Ω)1+10.0 Ω=35.0 Ω

Therefore, the equivalent resistance is 35.0 Ω.

(b)

To determine

Find the current flows through R1 .

(b)

Expert Solution
Check Mark

Answer to Problem 73P

The current flows through R1  is 0.686 A.

Explanation of Solution

The emf is 24 V.

Write the equation for current.

I=εReq (I)

Here, Req is the equivalent resistance, ε is the emf and I is the current.

Conclusion:

Substitute 24 V for ε and 35.0 Ω for Req in equation I.

I=24 V35.0 Ω=0.686 A

Therefore, the current flows through R1  is 0.686 A.

(c)

To determine

Find the power dissipated in in the circuit.

(c)

Expert Solution
Check Mark

Answer to Problem 73P

The power dissipated in the circuit is 16.5 W.

Explanation of Solution

Write the equation for power dissipated.

P=V2Req (II)

Here, P is the power dissipated and V is the potential difference.

Conclusion:

Substitute 24.0 V for V and 35.0 Ω for Req in equation II.

P=(24.0 V)235.0 Ω=16.5 W

Therefore, the power dissipated in the circuit is 16.5 W.

(d)

To determine

Find the potential difference across R3.

(d)

Expert Solution
Check Mark

Answer to Problem 73P

The potential difference across R3 is 6.9 V.

Explanation of Solution

Use the Kirchhoff’s loop rule to the left hand loop to determine the voltage drop.

Consider V3  as the potential difference across R3

Conclusion:

From Kirchhoff’s loop rule,

24.0 V(0.686 A)(15.0 Ω)V3(0.686 A)(10.0 Ω)=0

From the above equation solve for V3

V2=(24.010.296.86) V=6.85V=6.9V

Therefore, the potential difference across R3 is 6.9 V.

(e)

To determine

Find the current flows through R3.

(e)

Expert Solution
Check Mark

Answer to Problem 73P

The current flows through R3 is 0.34 A .

Explanation of Solution

Write the equation for potential difference.

I=VR (III)

Here, V is the potential difference, R is the resistance and I is the current.

Conclusion:

Substitute 6.85V for V and 20.0 Ω for R in equation III.

I=6.85 V20.0 Ω=0.34 A

Therefore, the current flows through R3 is 0.34 A.

(f)

To determine

Find the power dissipated in R3.

(f)

Expert Solution
Check Mark

Answer to Problem 73P

The power dissipated in R3 is 2.4 W .

Explanation of Solution

Consider the resistor R3 as Req

Conclusion:

Substitute 6.85V for V and 20.0 Ω for Req in equation II.

P=(6.85V)220.0 Ω=2.4 W

Therefore, the power dissipated in R3 is 2.4 W.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
RAD127 Radiographic Equipment and Computers SI Units in Radiography Ch. 1 & 2 Instructions: Provide the units for each of the following in full and short forms 1. Mass - kg, 9 or (1b)) ・ 2. Energy, Work - W = FD,J 3. Air kerma -(Gya) 4. Absorbed Dose- 5. Effective Dose J/kg (94+) jlkg J/kg, Sv 6. Radioactivity - 5-1, Bq 7. Weight 8. Time 9. Force 10. Power B9 wt, wt-mg, N -(s) F= ma, N, OR 1b. (JIS), P= work It = Fdlt, J
answer 1-8
1 . Solve the equation 2/7=y/3 for y.  2. Solve the equation x/9=2/6 for x.  3. Solve the equation z + 4 = 10    This is algebra and the equation is fraction.

Chapter 18 Solutions

PHYSICS

Ch. 18.6 - Prob. 18.7PPCh. 18.7 - Prob. 18.8PPCh. 18.8 - Prob. 18.9PPCh. 18.9 - Prob. 18.10PPCh. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - 6. A friend says that electric current “follows...Ch. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - Prob. 10CQCh. 18 - Prob. 11CQCh. 18 - Prob. 12CQCh. 18 - Prob. 13CQCh. 18 - Prob. 14CQCh. 18 - Prob. 15CQCh. 18 - Prob. 16CQCh. 18 - Prob. 17CQCh. 18 - Prob. 18CQCh. 18 - 19. When batteries are connected in parallel, they...Ch. 18 - 20. (a) If the resistance R1 decreases, what...Ch. 18 - Prob. 21CQCh. 18 - Prob. 22CQCh. 18 - Prob. 23CQCh. 18 - Prob. 1MCQCh. 18 - Prob. 2MCQCh. 18 - Prob. 3MCQCh. 18 - Prob. 4MCQCh. 18 - Prob. 5MCQCh. 18 - Prob. 6MCQCh. 18 - Prob. 7MCQCh. 18 - Prob. 8MCQCh. 18 - Prob. 9MCQCh. 18 - Prob. 10MCQCh. 18 - Prob. 1PCh. 18 - 2. The current in a wire is 0.500 A. (a) How much...Ch. 18 - Prob. 3PCh. 18 - Prob. 4PCh. 18 - 5. The current in the electron beam of a computer...Ch. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - Prob. 16PCh. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - 20. A copper wire of cross-sectional area 1.00 mm2...Ch. 18 - 21. An aluminum wire of diameter 2.6 mm carries a...Ch. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - 35. A battery has a terminal voltage of 12.0 V...Ch. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - Prob. 63PCh. 18 - Prob. 64PCh. 18 - Prob. 65PCh. 18 - Prob. 66PCh. 18 - Prob. 67PCh. 18 - Prob. 68PCh. 18 - Prob. 69PCh. 18 - Prob. 70PCh. 18 - Prob. 71PCh. 18 - 72. At what rate is energy dissipated in the 4.00...Ch. 18 - Prob. 73PCh. 18 - Prob. 74PCh. 18 - Prob. 75PCh. 18 - Prob. 76PCh. 18 - Prob. 77PCh. 18 - Prob. 78PCh. 18 - Prob. 79PCh. 18 - Prob. 80PCh. 18 - Prob. 81PCh. 18 - Prob. 83PCh. 18 - Prob. 82PCh. 18 - Prob. 85PCh. 18 - Prob. 84PCh. 18 - Prob. 90PCh. 18 - Prob. 86PCh. 18 - Prob. 87PCh. 18 - Prob. 88PCh. 18 - In the circuit of Problem 88, at what time after...Ch. 18 - Prob. 91PCh. 18 - Prob. 92PCh. 18 - Prob. 94PCh. 18 - Prob. 93PCh. 18 - Prob. 95PCh. 18 - Prob. 96PCh. 18 - Prob. 97PCh. 18 - Prob. 98PCh. 18 - Prob. 99PCh. 18 - Prob. 100PCh. 18 - Prob. 101PCh. 18 - Prob. 102PCh. 18 - Prob. 103PCh. 18 - Prob. 104PCh. 18 - Prob. 106PCh. 18 - Prob. 105PCh. 18 - Prob. 107PCh. 18 - Prob. 108PCh. 18 - Prob. 109PCh. 18 - Prob. 110PCh. 18 - A1 and A2 represent ammeters with negligible...Ch. 18 - Prob. 112PCh. 18 - Prob. 114PCh. 18 - Prob. 113PCh. 18 - Prob. 116PCh. 18 - Prob. 115PCh. 18 - Prob. 118PCh. 18 - Prob. 117PCh. 18 - Prob. 120PCh. 18 - Prob. 119PCh. 18 - Prob. 122PCh. 18 - Prob. 121PCh. 18 - Prob. 124PCh. 18 - Prob. 123PCh. 18 - Prob. 126PCh. 18 - Prob. 125PCh. 18 - Prob. 128PCh. 18 - Prob. 127PCh. 18 - Prob. 130PCh. 18 - Prob. 129PCh. 18 - Prob. 134PCh. 18 - Problems 131 and 132. A potentiometer is a...Ch. 18 - Prob. 132PCh. 18 - Prob. 133PCh. 18 - Prob. 136PCh. 18 - Prob. 135PCh. 18 - Prob. 138PCh. 18 - Prob. 137PCh. 18 - Prob. 139PCh. 18 - Poiseuilles law [Eq. (9-41)] gives the volume flow...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY