
Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 5PEB
What is the pressure, in N/m2, at a depth of 75 km in the continental crust?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Portfolio Problem 4. Consider two identical springs, each with natural length
and spring constant k, attached to a horizontal frame at distance 2l apart. Their
free ends are attached to the same particle of mass m, which is hanging under
gravity. Let z denote the vertical displacement of the particle from the hori-
zontal frame, so that z < 0 when the particle is below the frame, as shown in
the figure. The particle has zero horizontal velocity, so that the motion is one
dimensional along z.
000000
0
eeeeee
(a) Show that the total force acting on the particle is
X
F-mg k-2kz 1
(1.
l
k.
(b) Find the potential energy U(x, y, z) of the system such that U
x = : 0.
= O when
(c) The particle is pulled down until the springs are each of length 3l, and then
released. Find the velocity of the particle when it crosses z = 0.
In the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page.
R
Pout
(a) Calculate the maximum value of the emf induced between the ends of the conductor.
1.77
v
(b) What is the value of the average induced emf for each complete rotation?
0
v
(c) How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? (Select all that apply.)
The value in part (a) would increase.
The value in part (a) would remain the same.
The value in part (a) would decrease.
The value in part (b) would increase.
The value in part (b) would remain the same.
The value in part (b) would decrease.
×
(d) Sketch the emf versus time when the field is as drawn in the figure. Choose File No file chosen
This answer has not been graded yet.
(e) Sketch the emf…
Portfolio Problem 2. A particle of mass m slides in a straight line (say along i)
on a surface, with initial position x ©0 and initial velocity Vo > 0 at t = 0. The
=
particle is subject to a constant force F = -mai, with a > 0.
While sliding on the surface, the particle is also subject to a friction force
v
Ff
= -m fo
= −m fov,
with fo > 0, i.e., the friction force has constant magnitude mfo and is always
opposed to the motion. We also assume fo 0, and solve it to find v(t) and x(t).
How long does it take for the particle to come to a stop? How far does it travel?
(b) After coming to a stop, the particle starts sliding backwards with negative
velocity. Write the equation of motion in this case, and solve it to find the time
at which the particle returns to the original position, x = 0. Show that the final
speed at x 0 is smaller than Vo.
=
Express all your answers in terms of a, fo and Vo.
Chapter 18 Solutions
Physical Science
Ch. 18 - 1. The core of Earth is composed of
a. iron and...Ch. 18 - 2. The middle part of Earth's interior is
a....Ch. 18 - 3. The separation of materials that gave Earth its...Ch. 18 - 4. A vibration that moves through any part of...Ch. 18 - 5. The S-wave is a
a. longitudinal wave.
b....Ch. 18 - 6. Waves that occur where S- or P-waves reach the...Ch. 18 - 7. The three main areas of Earth’s interior are
a....Ch. 18 - 8. The boundary between the crust and the mantle...Ch. 18 - 9. The mantle is composed of
a. sulfides.
b....Ch. 18 - 10. Seismological studies suggests that the...
Ch. 18 - 11. Evidence from meteorite studies proposes that...Ch. 18 - 12. The layer in Earth where seismic waves sharply...Ch. 18 - 13. The layer that is broken up into plates that...Ch. 18 - 14. The name of the single large continent...Ch. 18 - 15. Records of the strength and directions of...Ch. 18 - 16. The chain of mountains found in the center of...Ch. 18 - 17. Long, deep, and narrow oceanic trenches are...Ch. 18 - 18. The theory that the lithosphere is composed of...Ch. 18 - 19. The plate boundary associated with the...Ch. 18 - 20. The movement of one plate under another plate...Ch. 18 - 21. Transform boundaries occur when
a. two plates...Ch. 18 - 22. What is the current theory about why the...Ch. 18 - 23. The seismic waves that cause the most damage...Ch. 18 - 24. Earth’s mantle has a chemical composition that...Ch. 18 - 25. From seismological data, Earth’s shadow zone...Ch. 18 - 26. The Mohorovicic discontinuity is a change in...Ch. 18 - 27. The oldest rocks are found in
a. continental...Ch. 18 - 28. The least dense rocks are found in
a....Ch. 18 - 29. The idea of seafloor spreading along the...Ch. 18 - 30. According to the plate tectonics theory,...Ch. 18 - 31. The presence of an oceanic trench, a chain of...Ch. 18 - 32. The presence of an oceanic trench with shallow...Ch. 18 - 33. The ongoing occurrence of earthquakes without...Ch. 18 - 34. The evidence that Earth's core is part liquid...Ch. 18 - 35. The surfaces of early planets in our solar...Ch. 18 - 36. The early Earth’s core is thought to have...Ch. 18 - 37. Indirect evidence that supports the theory of...Ch. 18 - 38. The oceanic crust is
a. thicker than the...Ch. 18 - 39. Seismic waves that do not travel through...Ch. 18 - 40. The fastest seismic wave is the
a. P-wave.
b....Ch. 18 - 41. Information about the composition and nature...Ch. 18 - 42. Primary information about the nature of the...Ch. 18 - 43. The asthenosphere is not defined as
a....Ch. 18 - 44. Earth’s magnetic field is thought to be...Ch. 18 - 45. Studies of the Mid-Atlantic Ridge provided...Ch. 18 - 46. Evidence that supports seafloor spreading does...Ch. 18 - 47. A geologic feature that was produced by...Ch. 18 - 48. Which type of plate boundary accounts for the...Ch. 18 - 49. Which type of plate boundary was responsible...Ch. 18 - 50. A famous transform boundary in the United...Ch. 18 - 51. Plate movement is measured by
a. reflected...Ch. 18 - 52. Islands that form when melted subducted...Ch. 18 - 1. Describe one theory of how Earth came to have a...Ch. 18 - 2. Briefly describe the internal composition and...Ch. 18 - 3. What is the asthenosphere? Why is it important...Ch. 18 - 4. Describe the parts of Earth included in the (a)...Ch. 18 - 5. What is continental drift? How is it different...Ch. 18 - 6. Rocks, sediments, and fossils around an oceanic...Ch. 18 - 7. Describe the origin of the magnetic strip...Ch. 18 - 8. Explain why ancient rocks are not found on the...Ch. 18 - 9. Describe the three major types of plate...Ch. 18 - 10. What is an island arc? Where are they found?...Ch. 18 -
11. Briefly describe a model that explains how...Ch. 18 - 12. Briefly describe the theory of plate tectonics...Ch. 18 - 13. What is an oceanic trench? What is the...Ch. 18 - 14. Describe the probable source of all the...Ch. 18 - 15. The northwestern coast of the United States...Ch. 18 - 16. Explain how the crust of Earth is involved in...Ch. 18 - 1. Why are there no active volcanoes in the...Ch. 18 - 2. Describe cycles that occur on Earth's surface...Ch. 18 - 3. Discuss evidence that would explain why plate...Ch. 18 - 4. Analyze why you would expect most earthquakes...Ch. 18 - 1. The rate at which the temperature increases...Ch. 18 - 2. Based on a geothermal gradient of 15°C/km, what...Ch. 18 - Prob. 3PEBCh. 18 - 4. What is the pressure, in N/m2, at the depth of...Ch. 18 - 5. What is the pressure, in N/m2, at a depth of 75...Ch. 18 - 6. What is the pressure, in N/m2, at the base of...Ch. 18 - 7. Wood floating in water can demonstrate how the...Ch. 18 - 8. A teacher would like to demonstrate the...Ch. 18 - 9. A survey of a mid-oceanic ridge determined the...Ch. 18 - 10. GPS stations on two separate plates have...Ch. 18 - 11. What is the geothermal gradient along a...Ch. 18 - 12. What are the subduction direction and slope of...Ch. 18 - 13. What are the subduction direction and slope,...Ch. 18 - 14. Earthquake data from a subduction zone are...Ch. 18 - 15. The North American Plate is moving west at a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Label each statement about the polynucleotide ATGGCG as true or false. The polynucleotide has six nucleotides. ...
General, Organic, and Biological Chemistry - 4th edition
Describe the evolution of mammals, tracing their synapsid lineage from early amniote ancestors to true mammals....
Loose Leaf For Integrated Principles Of Zoology
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
What process causes the Mediterranean intermediate Water MIW to become more dense than water in the adjacent At...
Applications and Investigations in Earth Science (9th Edition)
Gregor Mendel never saw a gene, yet he concluded that some inherited factors were responsible for the patterns ...
Campbell Essential Biology (7th Edition)
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- = Portfolio Problem 1. A particle of mass m is dropped (i.e., falls down with zero initial velocity) at time t 0 from height h. If the particle is subject to gravitational acceleration only, i.e., a = −gk, determine its speed as it hits the ground by solving explicitly the expressions for its velocity and position. Next, verify your result using dimensional analysis, assuming that the general relation is of the form v = khag³m, where k is a dimensionless constant.arrow_forwardReview Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow- green fringe? m = 3 m = 3 m= 0 m = 3 m = 3 Fringes on observation screenarrow_forwardIn the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page. In this illustration, a wire extends straight to the right from point A, then curves up and around in a semicircle of radius R. On the right side of the semicircle, the wire continues straight to the right to point C. The wire lies in the plane of the page, in a region of no magnetic field. Directly below the axis A C is a region of uniform magnetic field pointing out of the page, vector Bout. If viewed from the right, the wire can rotate counterclockwise, so that the semicircular part can rotate into the region of magnetic field. (a) Calculate the maximum value of the emf induced between the ends of the conductor. V(b) What is the value of the average induced emf for each complete rotation? Consider carefully whether the correct answer is…arrow_forward
- A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.20 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 6.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =arrow_forwardA coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 1.80 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 5.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =arrow_forwardWhich vowel does this graph represent (”ah,” “ee,” or “oo”)? How can you tell? Also, how would you be able to tell for the other vowels?arrow_forward
- Concept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardA bat is flying toward a cave wall at 27.0 m/s. What is the frequency of the reflected sound that it hears, assuming it emits sound at 52.0 kHz? The speed of sound is 341.5 m/s. Multiple Choice о 60.9 kHz О 56.5 kHz о 61.3 kHz О 56.1 kHzarrow_forwardCompare the slope of your Data Table 2 graph to the average wavelength (Ave, l) from Data Table 2 by calculating the % Difference. Is the % Difference calculated for the wavelength in Data Table 2 within an acceptable % error? Explain why or why not?arrow_forward
- The slope of a graph of velocity, v, vs frequency, f, is equal to wavelength, l. Compare the slope of your Data Table 1 graph to the average wavelength (Ave, l) from Data Table 1 by calculating the % Difference.arrow_forwardExamine the slope of the line on the graph created using the data in Data Table 4 of Period, T2 vs L, the slope of the line is a constant containing the acceleration due to gravity, g. Using the slope of your line, determine the experimental value for g. Compare the value you determined for g from the slope of the graph to the expected value of 9.81 m/s2 by calculating the percent error.arrow_forwardFrom your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning


Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY