Concept explainers
Investigate the meaning of numerical analysis and give its examples.
Explanation of Solution
In order to obtain the numerical solutions for the mathematical problems, numerical analysis is used. In the field of engineering and physics, numerical analysis plays a vital role.
Give the areas of study of numerical analysis as below.
- Value of functions
- Solving system of linear equations
- Differential equation
- Integral
- Eigen values and
vectors
Value of functions:
The function of numerical analysis includes square root, cube root, logarithmic etc.
Example:
Let us consider the value,
Square root:
The square root of
Cube root:
The cube root of
Logarithmic function:
The logarithmic value of
Solving system of linear equations:
It is a collection of two or more linear equation involves same set of variables.
Consider the linear equation as follows:
Solve equation (1) and (2)
Multiply equation (1) by
Therefore equation (2) becomes,
Solve equation (2) and (4)
Multiply equation (1) by
Therefore equation (1) becomes,
Solve equation (6) and (3)
Solve equation (5) and (7)
Multiply equation (7) by
Therefore equation (7) becomes,
Solve equation (5) and (8)
Substitute
Substitute
Therefore, the solution is
Differential equation:
The differential equation is the equation which contains functions of derivatives represents their rate of change.
Let us consider the equation as follows:
Differentiate equation (9) with respect to
Therefore equation (9) becomes:
Thus, the rate of change of equation (9) is
Integral:
Integral calculus is the development of differential calculus. It is used to find the displacement, moment of inertia, area and volume in the mathematical concepts.
The indefinite integral can be represented by,
Let us consider the function,
Substitute
Eigen values and Eigen vectors:
The Eigen value is a non-zero vector that changes by a scalar factor when the linear transformation is applied.
Consider the Eigen value problem:
Here,
Consider the matrix A as follows:
The Eigen value of the matrix can be calculated by,
Here,
Substitute
Solve the equation (13)
Reduce equation (14) as follows,
The Eigen values are,
Eigen vectors for the Eigen value can be calculated as follows:
Substitute
Reduce the equation (16) as follows,
Write the matrix form of equation (17) into linear equation as follows,
Solving equation (18) and (19)
Therefore, the Eigen vector of
Eigen vectors for the Eigen value can be calculated as follows:
Substitute
Reduce the equation (16) as follows,
Write the matrix form of equation (22) into linear equation as follows,
Solving equation (23) and (24)
Therefore, the Eigen vector of
Conclusion:
Thus, the numerical analysis and its examples are explained.
Want to see more full solutions like this?
Chapter 18 Solutions
MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th
- A steel rod 100 ft long holds a 200 lb weight as shown. If the diameter of the circular rod is ¼ inch, find the maximum normal stress in the road, taking into account the weight of the rod itself. Use: density of steel = ϒ = 490 lb/ft3 .arrow_forwardضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forward
- A square flexible foundation of width B applies a uniform pressure go to the underlying ground. (a) Determine the vertical stress increase at a depth of 0.5B below the center using Aσ beneath the corner of a uniform rectangular load given by Aσ Variation of Influence Value I m n 0.5 0.6 0.8 1.0 0.2 0.4 0.2 0.01790 0.03280 0.03866 0.04348 0.05042 0.05471 0.4 0.03280 0.06024 0.07111 0.08009 0.09314 0.10129 0.5 0.03866 0.07111 0.08403 0.09473 0.11035 0.12018 0.6 0.04348 0.08009 0.09473 0.10688 0.12474 0.13605 0.8 0.05042 0.09314 0.11035 0.12474 0.14607 0.15978 1.0 0.05471 0.10129 0.12018 0.13605 0.15978 0.17522 (Enter your answer to three significant figures.) Ασ/90 = Activity Frame (b) Determine the vertical stress increase at a depth of 0.5B below the center using the 2 : 1 method equation below. 90 x B x L Aσ = (B+ z) (L+ z) (Enter your answer to three significant figures.) Δσ/90 = (c) Determine the vertical stress increase at a depth of 0.5B below the center using stress isobars in…arrow_forwardNeed help!!!arrow_forward2 A flexible circular area is subjected to a uniformly distributed load of 450 kN/m² (the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. H₂ 1.0 H₂ B 0.8 CHI HD DV 0.6 C 1.0 1.5 0.4 0.2 6.0 8.0. 10.0 2.0 2.5 3.0 4.0 5.0 H₁ (Enter your answer to two significant figures.) Δσαν τ kN/m² 6arrow_forward
- Refer to the figure below. Using the procedure outlined in your textbook, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 45 tons. Use the equations: Aσ = and qo x B x L (B+ z)(L+ z) Aσ av (H2/H₁) Δσι +44 + Δσο net load 6 4:5 ft 10 ft 5ft x 5ft Sand Sand y=100 lb/ft³ Ysat 122 lb/ft³:" Ysat 120 lb/ft³: 0.7 C=0.25 Groundwater table C=0.06 Preconsolidation pressure = 2000 lb/ft² (Enter your answer to three significant figures.) Ασαν = lb/ft²arrow_forwardRefer to the figure below, which shows a flexible rectangular area. Given: B₁ = 4 ft, B₂ = 6 ft, L₁ = 8 ft, and L2 = 10 ft. If the area is subjected to a uniform load of 4100 lb/ft², determine the stress increase at a depth of 10 ft located immediately below point O. Use the table below. T B(1) 3 B(2) 2 L(1) * 4 L2) Table 1 Variation of Influence Value I n m 0.8 0.9 1.0 1.2 1.4 0.1 0.02576 0.02698 0.02794 0.02926 0.03007 0.2 0.05042 0.05283 0.05471 0.05733 0.05894 0.3 0.07308 0.07661 0.07938 0.08323 0.08561 0.4 0.09314 0.09770 0.10129 0.10631 0.10941 0.5 0.11035 0.11584 0.12018 0.12626 0.13003 0.6 0.12474 0.13105 0.13605 0.14309 0.14749 0.7 0.13653 0.14356 0.14914 0.15703 0.16199 0.8 0.14607 0.15371 0.15978 0.16843 0.17389 0.9 0.15371 0.16185 0.16835 0.1766 0.18357 1.0 0.15978 0.16835 0.17522 0.18508 0.19139 1.1 0.16843 0.17766 0.18508 0.19584 0.20278 (Enter your answer to three significant figures.) Aσ = lb/ft²arrow_forwardPoint loads of magnitude 100, 200, and 380 kN act at B, C, and D, respectively (in the figure below). Determine the increase in vertical stress at a depth of 6 m below point A. Use Boussinesq's equation. B 6 m A 6 m с 3 m D (Enter your answer to three significant figures.) Δαχτ kN/m²arrow_forward
- Two line loads q₁ = 30 kN/m and 92 = 44 kN/m of infinite lengths are acting on top of an elastic medium, as shown in the figure below. Find the vertical stress increase at A. 92 91 6 m 3 m 3 m Δσ A (Enter your answer to three significant figures.) Vertical stress increase at A = kN/m²arrow_forwardA flexible circular area is subjected to a uniformly distributed load of 144 kN/m² (see the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. Use the equations: 1 Ασ = go 1 [1 + (2) ² ³/2 and Aσ av (H2/H1) Δσι + 41ση + Ασο 6 9 B/2 krark do Δε Aσ (Enter your answer to three significant figures.) Ασαν = kN/m²arrow_forwardIn construction what is the difference in general requirements specific project requirements?arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning