
Concept explainers
Investigate the meaning of numerical analysis and give its examples.

Explanation of Solution
In order to obtain the numerical solutions for the mathematical problems, numerical analysis is used. In the field of engineering and physics, numerical analysis plays a vital role.
Give the areas of study of numerical analysis as below.
- Value of functions
- Solving system of linear equations
- Differential equation
- Integral
- Eigen values and
vectors
Value of functions:
The function of numerical analysis includes square root, cube root, logarithmic etc.
Example:
Let us consider the value,
Square root:
The square root of
Cube root:
The cube root of
Logarithmic function:
The logarithmic value of
Solving system of linear equations:
It is a collection of two or more linear equation involves same set of variables.
Consider the linear equation as follows:
Solve equation (1) and (2)
Multiply equation (1) by
Therefore equation (2) becomes,
Solve equation (2) and (4)
Multiply equation (1) by
Therefore equation (1) becomes,
Solve equation (6) and (3)
Solve equation (5) and (7)
Multiply equation (7) by
Therefore equation (7) becomes,
Solve equation (5) and (8)
Substitute
Substitute
Therefore, the solution is
Differential equation:
The differential equation is the equation which contains functions of derivatives represents their rate of change.
Let us consider the equation as follows:
Differentiate equation (9) with respect to
Therefore equation (9) becomes:
Thus, the rate of change of equation (9) is
Integral:
Integral calculus is the development of differential calculus. It is used to find the displacement, moment of inertia, area and volume in the mathematical concepts.
The indefinite integral can be represented by,
Let us consider the function,
Substitute
Eigen values and Eigen vectors:
The Eigen value is a non-zero vector that changes by a scalar factor when the linear transformation is applied.
Consider the Eigen value problem:
Here,
Consider the matrix A as follows:
The Eigen value of the matrix can be calculated by,
Here,
Substitute
Solve the equation (13)
Reduce equation (14) as follows,
The Eigen values are,
Eigen vectors for the Eigen value can be calculated as follows:
Substitute
Reduce the equation (16) as follows,
Write the matrix form of equation (17) into linear equation as follows,
Solving equation (18) and (19)
Therefore, the Eigen vector of
Eigen vectors for the Eigen value can be calculated as follows:
Substitute
Reduce the equation (16) as follows,
Write the matrix form of equation (22) into linear equation as follows,
Solving equation (23) and (24)
Therefore, the Eigen vector of
Conclusion:
Thus, the numerical analysis and its examples are explained.
Want to see more full solutions like this?
Chapter 18 Solutions
MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th
- P15.45 WP A stainless steel pipe (Figure P15.45) with an outside diameter of 2.375 in. and a wall thickness of 0.109 in. is subjected to a bending moment M = 50 lb ft and an internal pressure of 180 psi. Determine the absolute maximum shear stress on the outer surface of the pipe. M FIGURE P15.45 Marrow_forward10.72 What power must the pump supply to the system to pump the oil from the lower reservoir to the upper reservoir at a rate of 0.3 m³/s? Sketch the HGL and the EGL for the system. p=940 kg/m³ v = 10-5 m²/s Elevation 100 m Elevation 112 m L= 150 m Oil Steel pipe D = 30 cm Problem 10.72arrow_forwardL / 83° 28° $75°E M 202° Q2: The scanning process was completed from point J to point N. The direction of the straight line was LM and the angles of deviation are shown in the figure below. Find the direction of the remaining sides? Narrow_forward
- Q3: The scanning process was completed from point F to point G. The direction of the line Fl and the angles of deviation and interior are shown in the figure below. Find the direction of the remaining sides? Azimn = 60° F 52° 52° 72° R= 572.958/D ° T-R tan(A/2) • LC 2R sin (A/2) • E-R (sec(A/2)-1) • M-R (1-cos (A/2)) L= 10 A/D •C=2R sin(2D/2) • d=Dc/10 c' 2R sin (d/2) • Y= √√R2-X2-K • K= R2- K=R-M G H معادلات :مفيدةarrow_forwardPlease write me Background Reviews;arrow_forwardQ1/ The specific gravity of the soil is 1.41 percentage of water content by weight at field capacity and wilting point are 15% and 7% respectively calculate the equivalent moisture content as equivalent depth for 1.2m root zone : 1. at permanent wilting point 2. at field capacity 3. for ready available waterarrow_forward
- Kindy explain the pie chart percentage and give some related study and references about Value of travel time connected to the pie chartarrow_forwardConsider the specifications for an asphaltic concrete mixture and the results of a sieve analysis below. Coarse aggregates: Fine aggregates: Filler: 60% 35% 5% Percent of Weight of Aggregate or Filler Passing Sieve Designation Retained on Sieve Designation Coarse Aggregate Fine Aggregate Mineral Filler 3/4 in. (19 mm) 1/2 in. 6 1/2 in. (12.5 mm) 3/8 in. 15 3/8 in. (9.5 mm) No. 4 50 - No. 4 (4.75 mm) No. 10 20 1 No. 10 (2 mm) No. 40 (0.425 mm) No. 40 9 35 - No. 80 31 40 No. 80 (0.180 mm) No. 200 (0.075 mm) Total No. 200 - 33 - - 25 35 100 100 100 Determine the proportion of different aggregates to obtain the required gradation. Percent of Total Weight of Mixture Passing Sieve Designation Retained on Sieve Designation Coarse Aggregate Fine Aggregate 3/4 in. (19 mm) 1/2 in. (12.5 mm) 3/8 in. (9.5 mm) 1/2 in. 3/8 in. No. 4 No. 4 (4.75 mm) No. 10 No. 10 (2 mm) No. 40 No. 40 (0.425 mm) No. 80 No. 80 (0.180 mm) No. 200 No. 200 (0.075 mm) Total Need Help? Read It Mineral Filler Total 100arrow_forwardResults obtained from laboratory tests on a sample of RC-250 asphalt cement are given. Determine whether the properties of this material meet the Asphalt Institute specifications for this type of material; if not, note the differences. (For each specification, enter the minimum acceptab value in the same units as used in the test results.) • Kinematic viscosity at 140°F (60°C) = 230 centistokes • Flash point (Tagliabue open cup) = 89°F • Distillation test where distillate percent by volume of total distillate to 680°F (360ºC) • To 437°F (225°C) = 27% • To 500°F (260°C) = 69% • To 600°F (316°C) = 72% • Residue from distillation to 680°F (360°C) by volume percentage of sample by difference • Tests on Residue from Distillation: • Ductility at 77°F (25°C) = 92 cm • Absolute viscosity at 140°F (60°C) = 620 poises ⚫ Solubility = 90% Property Kinematic Viscosity = 74% Specification Test Results Were Specifications Met? centistokes 230 centistokes ---Select--- ✓ Flash Point °F 89°F…arrow_forward
- Problem 2 Two machines produce rivets for a factory job. The number of sub-standard rivets per hour by the two machines are random variables, denoted by X1 and X2. The bivariate PMF of X1 and X2, Px,x,(x1,x2), is given in the table below. X2=0 X2=1 X2=2 X2=3 X₁-0 0.07 0.05 0.02 0.01 X₁ =1 0.05 0.16 0.12 0.02 X₁ =2 0.02 0.12 0.17 0.05 X₁ =3 0.01 0.01 0.05 0.07arrow_forwardPlease provide a handwritten solution to the questionarrow_forwardPlease solve the question by hand with a detailed explanation of the steps.arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning

