Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
2nd Edition
ISBN: 9781337086431
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 43E
Interpretation Introduction

Interpretation: The atomic masses of neutron, proton, electron 232Pu and 231Pa are given. Using these values, the change in energy when 1 mole of 232Pu nuclei and 1 mole of 231Pa nuclei are formed from their respective number of protons and neutrons is to be calculated.

Concept introduction: The difference between the mass of an atom and the mass of its constituent particles is known as mass defect. This mass can be converted into energy by Einstein’s mass-energy equation as,

ΔE=Δmc2

To determine: The change in energy when 1 mole of 232Pu nuclei and 1 mole of 231Pa nuclei are formed from their respective number of protons and neutrons.

Expert Solution & Answer
Check Mark

Answer to Problem 43E

Solution

The change in energy when 1 mole of 232Pu nuclei formed is 1.6702×1014J/mol_

The change in energy when 1 mole of 231Pa nuclei formed is 1.6704×1014J/mol_

Explanation of Solution

Explanation

Given

The atomic mass of 232Pu is 3.85285×1022g .

The mass of a neutron is 1.67493×1024g .

The mass of a proton is 1.67262×1024g .

The atomic number of 232Pu is 94 . Therefore, the number of protons in 232Pu is 94.

The number of neutrons in 232Pu is,

Number of neutrons =23294=138

The mass defect is calculated by the formula,

Δm=Atomicmass of 232Pu[Numberofprotons×massofprotonNumberofneutrons×massofneutron]

Where,

  • Δm is the mass defect.

Substitute the value of the atomic mass of 232Pu , the number of protons and neutrons and their respective masses in the above equation.

Δm=3.85285×1022g[(94×1.67262×1024g)+(138×1.67493×1024g)]=0.0308162×1022g

To calculate the mass defect for one mole of 232Pu , multiply this value by Avogadro’s number (6.022×1023permol) .

Δm'=0.0308162×1022g×6.022×1023permol=1.85575g/mol_

The change in energy of 232Pu is. 1.6702×1014J/mol_ .

Explanation

The mass defect is 1.85575g/mol .

The conversion of gram (g) into kilogram (kg) is done as,

1g=103kg

Hence, the conversion of 1.85575g/mol into kilogram/mol is,

1.85575g/mol=1.85575×103kg/mol

The energy change is calculated by Einstein’s mass energy equation,

ΔE=Δm'c2

Where,

  • ΔE is the change in energy.
  • Δm' is the mass defect.
  • c is the speed of light (3.0×108m/s) .

Substitute the values of Δm' and c in the above equation.

ΔE=Δm'c2=(1.85575×103kg/mol)(3.0×108m/s)2=1.6702×1014J/mol_

The mass defect of 231Pa nucleus is 1.85635g/mol_ .

Explanation

Given

The atomic mass of 231Pa is 3.83616×1022g .

The mass of a neutron is 1.67493×1024g .

The mass of a proton is 1.67262×1024g .

The atomic number of 231Pa is 91 . Therefore, the number of protons in 231Pa is 91 .

The number of neutrons in 232Pu is,

Number of neutrons =23191=140

The mass defect is calculated by the formula,

Δm=Atomicmass of 231Pa[Numberofprotons×massofprotonNumberofneutrons×massofneutron]

Substitute the value of the atomic mass of 231Pa , the number of protons and neutrons and their respective masses in the above equation.

Δm=3.83616×1022g[(91×1.67262×1024g)+(140×1.67493×1024g)]=0.0308262×1022g

To calculate the mass defect for one mole of 231Pa , multiply this value by Avogadro’s number (6.022×1023permol) .

Δm'=0.0308262×1022g×6.022×1023permol=1.85635g/mol_

The binding energy of 231Pa is. 1.6707×1014J/mol_ .

Explanation

The mass defect is 1.85635g/mol .

The conversion of gram (g) into kilogram (kg) is done as,

1g=103kg

Hence, the conversion of 1.85635g/mol into kilogram/mol is,

1.85635g/mol=1.85635×103kg/mol

The energy change is calculated by Einstein’s mass energy equation,

ΔE=Δm'c2

Where,

  • ΔE is the change in energy.
  • Δm' is the mass defect.
  • c is the speed of light (3.0×108m/s) .

Substitute the values of Δm' and c in the above equation.

ΔE=Δm'c2=(1.85635×103kg/mol)(3.0×108m/s)2=1.6707×1014J/mol_

Conclusion

Conclusion

The change in energy when 1 mole of 232Pu nuclei formed is 1.6702×1014J/mol_ .

The change in energy when 1 mole of 231Pa nuclei formed is 1.6707×1014J/mol_ .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In the following reaction, what quantity in moles of CH₃OH are required to give off 4111 kJ of heat? 2 CH₃OH (l) + 3 O₂ (g) → 2 CO₂ (g) + 4 H₂O(g) ∆H° = -1280. kJ
Indicate the processes in the dismutation of Cu2O.
1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 Potential Energy (kJ) 600 400 200 0 -200- -400 -600- -800 (i) Cl₂ (g) + Pt(s) → 2Cl (g) + Pt(s) (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) Ea = 1550 kJ Ea = 2240 kJ (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2350 kJ AH=-950 kJ ΔΗ = 575 ΚΙ AH=-825 kJ a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ Reaction Progress b. What is the overall chemical equation? c. What is the overall change in enthalpy for the above chemical reaction? d. What is the overall amount of activation energy for the above chemical reaction? e. Which reaction intermediate would be considered a catalyst (if any) and why? f. If you were to add 2700kJ of energy to the reaction (e.g. 2700 kl of heat or electricity), would you be able to make the reaction reverse itself (i.e. have…

Chapter 18 Solutions

Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card

Ch. 18 - Prob. 1QCh. 18 - Prob. 2QCh. 18 - Prob. 3QCh. 18 - Prob. 4QCh. 18 - Prob. 5QCh. 18 - Prob. 6QCh. 18 - Prob. 7QCh. 18 - Prob. 8QCh. 18 - Prob. 9QCh. 18 - Prob. 10QCh. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - Prob. 50ECh. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - Prob. 53ECh. 18 - A chemist studied the reaction mechanism for the...Ch. 18 - Prob. 55ECh. 18 - Prob. 56ECh. 18 - Prob. 57ECh. 18 - Prob. 58ECh. 18 - Prob. 59AECh. 18 - Prob. 60AECh. 18 - Prob. 61AECh. 18 - Prob. 62AECh. 18 - Prob. 63AECh. 18 - Prob. 64AECh. 18 - Prob. 65AECh. 18 - Prob. 66AECh. 18 - Prob. 67AECh. 18 - Prob. 68AECh. 18 - Prob. 69AECh. 18 - Prob. 70AECh. 18 - Prob. 71AECh. 18 - Prob. 72AECh. 18 - Prob. 73CWPCh. 18 - Prob. 74CWPCh. 18 - Prob. 75CWPCh. 18 - Prob. 76CWPCh. 18 - Prob. 77CWPCh. 18 - Prob. 78CWPCh. 18 - Prob. 79CPCh. 18 - Prob. 80CPCh. 18 - Prob. 81CPCh. 18 - Prob. 82CPCh. 18 - Prob. 83CPCh. 18 - Prob. 84CPCh. 18 - Prob. 85CPCh. 18 - Prob. 86CPCh. 18 - Prob. 87IPCh. 18 - Prob. 88IP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning