
Calculate ΔS°(system), ΔS°(surroundings), and ΔS°(universe) for each of the following processes at 298 K, and comment on how these systems differ.
- (a) HNO3(g) → HNO3(aq)
- (b) NaOH(s) → NaOH(aq)
(a)

Interpretation:
The entropy change for the system, surroundings and universe for the given reaction should be calculated and commented how this system differs.
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
Answer to Problem 40GQ
The
The
The
Explanation of Solution
The entropy change for the system, surroundings and universe for the given reaction is calculated below.
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
The standard entropy of
The standard entropy of
The standard enthalpy of
The standard enthalpy of
The balanced chemical equation is:
The
Substituting the respective values
The
Substituting the respective values
The
Now,
The
The
The
The given reaction is exothermic. There is more decrease in entropy in formation of
(b)

Interpretation:
The entropy change for the system, surroundings and universe for the given reaction should be calculated and commented how this system differs.
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
The
The
The
Here,
Answer to Problem 40GQ
The
The
The
Explanation of Solution
The entropy change for the system, surroundings and universe for the given reaction is calculated below.
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
The standard entropy of
The standard entropy of
The standard enthalpy of
The standard enthalpy of
The balanced chemical equation is:
The
Substituting the respective values
The
Substituting the respective values
The
Now,
The
The
The
The given reactions is exothermic. The entropy change for the formation of
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
- The temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forwardQUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forward
- er your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward5.arrow_forward6.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





