Concept explainers
Software Development Methodology:
Different methodologies in software development:
- Agile methodology
- Waterfall methodology
- Rapid application development (RAD) methodology
- Extreme
programming (XP) methodology - Rational Unified Process (RUP)
- SCRUM
Agile methodology:
This methodology targets the customer satisfaction by delivering the software components quickly and continuously to the customer. This process is carried over by an iterative process which uses minimum requirements.
Waterfall methodology:
Waterfall model is considered as activity based process. Here every phase of SDLC is being accomplished in sequential manner.
Rapid application development (RAD) methodology:
This method highlights huge user involvement in the rapid and evolutionary structure of working prototypes for a system that accelerates the system development methods
Extreme programming (XP) methodology:
This methodology used to divide a project into four phases such as planning, designing, coding and testing. Here the developers are not able to move to the next phase until the preceding phase is complete.
Rational Unified Process (RUP):
This method is used for separating the development of software into four gates such as inception, elaboration, construction and transition. Every gate contains the software executable iterations in development.
SCRUM:
This method is based on team. The team is to delivering the small pieces of software using a “sprints” or “30-day interval” to reach a specific goal.
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
BUSINESS DRIVEN TECHNOLOGY(LL)-W/ACCESS
- What are the charts (with their title name) that could be use to illustrate the data? Please give picture examples.arrow_forwardA design for a synchronous divide-by-six Gray counter isrequired which meets the following specification.The system has 2 inputs, PAUSE and SKIP:• While PAUSE and SKIP are not asserted (logic 0), thecounter continually loops through the Gray coded binarysequence {0002, 0012, 0112, 0102, 1102, 1112}.• If PAUSE is asserted (logic 1) when the counter is onnumber 0102, it stays here until it becomes unasserted (atwhich point it continues counting as before).• While SKIP is asserted (logic 1), the counter misses outodd numbers, i.e. it loops through the sequence {0002,0112, 1102}.The system has 4 outputs, BIT3, BIT2, BIT1, and WAITING:• BIT3, BIT2, and BIT1 are unconditional outputsrepresenting the current number, where BIT3 is the mostsignificant-bit and BIT1 is the least-significant-bit.• An active-high conditional output WAITING should beasserted (logic 1) whenever the counter is paused at 0102.(a) Draw an ASM chart for a synchronous system to providethe functionality described above.(b)…arrow_forwardS A B D FL I C J E G H T K L Figure 1: Search tree 1. Uninformed search algorithms (6 points) Based on the search tree in Figure 1, provide the trace to find a path from the start node S to a goal node T for the following three uninformed search algorithms. When a node has multiple successors, use the left-to-right convention. a. Depth first search (2 points) b. Breadth first search (2 points) c. Iterative deepening search (2 points)arrow_forward
- We want to get an idea of how many tickets we have and what our issues are. Print the ticket ID number, ticket description, ticket priority, ticket status, and, if the information is available, employee first name assigned to it for our records. Include all tickets regardless of whether they have been assigned to an employee or not. Sort it alphabetically by ticket status, and then numerically by ticket ID, with the lower ticket IDs on top.arrow_forwardFigure 1 shows an ASM chart representing the operation of a controller. Stateassignments for each state are indicated in square brackets for [Q1, Q0].Using the ASM design technique:(a) Produce a State Transition Table from the ASM Chart in Figure 1.(b) Extract minimised Boolean expressions from your state transition tablefor Q1, Q0, DISPATCH and REJECT. Show all your working.(c) Implement your design using AND/OR/NOT logic gates and risingedgetriggered D-type Flip Flops. Your answer should include a circuitschematic.arrow_forwardA controller is required for a home security alarm, providing the followingfunctionality. The alarm does nothing while it is disarmed (‘switched off’). It canbe armed (‘switched on’) by entering a PIN on the keypad. Whenever thealarm is armed, it can be disarmed by entering the PIN on the keypad.If motion is detected while the alarm is armed, the siren should sound AND asingle SMS message sent to the police to notify them. Further motion shouldnot result in more messages being sent. If the siren is sounding, it can only bedisarmed by entering the PIN on the keypad. Once the alarm is disarmed, asingle SMS should be sent to the police to notify them.Two (active-high) input signals are provided to the controller:MOTION: Asserted while motion is detected inside the home.PIN: Asserted for a single clock cycle whenever the PIN has beencorrectly entered on the keypad.The controller must provide two (active-high) outputs:SIREN: The siren sounds while this output is asserted.POLICE: One SMS…arrow_forward
- 4G+ Vo) % 1.1. LTE1 : Q B NIS شوز طبي ۱:۱۷ کا A X حاز هذا على إعجاب Mohamed Bashar. MEDICAL SHOE شوز طبي ممول . اقوى عرض بالعراق بلاش سعر القطعة ١٥ الف سعر القطعتين ٢٥ الف سعر 3 قطع ٣٥ الف القياسات : 40-41-42-43-44- افحص وكدر ثم ادفع خدمة التوصيل 5 الف لكافة محافظات العراق ופרסם BNI SH ופרסם DON JU WORLD DON JU MORISO DON JU إرسال رسالة III Messenger التواصل مع شوز طبي تعليق باسم اواب حمیدarrow_forwardA manipulator is identified by the following table of parameters and variables:a. Obtain the transformation matrices between adjacent coordinate frames and calculate the global transformation matrix.arrow_forwardWhich tool takes the 2 provided input datasets and produces the following output dataset? Input 1: Record First Last Output: 1 Enzo Cordova Record 2 Maggie Freelund Input 2: Record Frist Last MI ? First 1 Enzo Last MI Cordova [Null] 2 Maggie Freelund [Null] 3 Jason Wayans T. 4 Ruby Landry [Null] 1 Jason Wayans T. 5 Devonn Unger [Null] 2 Ruby Landry [Null] 6 Bradley Freelund [Null] 3 Devonn Unger [Null] 4 Bradley Freelund [Null] OA. Append Fields O B. Union OC. Join OD. Find Replace Clear selectionarrow_forward
- What are the similarities and differences between massively parallel processing systems and grid computing. with referencesarrow_forwardModular Program Structure. Analysis of Structured Programming Examples. Ways to Reduce Coupling. Based on the given problem, create an algorithm and a block diagram, and write the program code: Function: y=xsinx Interval: [0,π] Requirements: Create a graph of the function. Show the coordinates (x and y). Choose your own scale and show it in the block diagram. Create a block diagram based on the algorithm. Write the program code in Python. Requirements: Each step in the block diagram must be clearly shown. The graph of the function must be drawn and saved (in PNG format). Write the code in a modular way (functions and the main part should be separate). Please explain and describe the results in detail.arrow_forwardBased on the given problem, create an algorithm and a block diagram, and write the program code: Function: y=xsinx Interval: [0,π] Requirements: Create a graph of the function. Show the coordinates (x and y). Choose your own scale and show it in the block diagram. Create a block diagram based on the algorithm. Write the program code in Python. Requirements: Each step in the block diagram must be clearly shown. The graph of the function must be drawn and saved (in PNG format). Write the code in a modular way (functions and the main part should be separate). Please explain and describe the results in detail.arrow_forward
- Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781305971776Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningEnhanced Discovering Computers 2017 (Shelly Cashm...Computer ScienceISBN:9781305657458Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. CampbellPublisher:Cengage LearningSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- Fundamentals of Information SystemsComputer ScienceISBN:9781337097536Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningPrinciples of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning