Figure P18.37 shows a simplified model of a cardiac defibrillator, a device used to patients in ventricular fibrillation. When the switch S is toggled to the left, the capacitor C charges through the resistor R .When the switch is toggled to the right, the capacitor discharges current through the patient’s torso, modeled as the resistor R torso , allowing the heart’s normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 8.00 µ F and ε = 1250 V, find the value of R required to charge the capacitor to a voltage of 775 V in 1.50 s. (b) If the capacitor is then discharged across the patient’s torso with, R torso = 1250 Ω, calculate the voltage across the capacitor after 5.00 ms. Figure P18.37
Figure P18.37 shows a simplified model of a cardiac defibrillator, a device used to patients in ventricular fibrillation. When the switch S is toggled to the left, the capacitor C charges through the resistor R .When the switch is toggled to the right, the capacitor discharges current through the patient’s torso, modeled as the resistor R torso , allowing the heart’s normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 8.00 µ F and ε = 1250 V, find the value of R required to charge the capacitor to a voltage of 775 V in 1.50 s. (b) If the capacitor is then discharged across the patient’s torso with, R torso = 1250 Ω, calculate the voltage across the capacitor after 5.00 ms. Figure P18.37
Solution Summary: The author explains the formula to calculate time constant tau and the value of resistor R to charge the capacitor.
Figure P18.37 shows a simplified model of a cardiac defibrillator, a device used to patients in ventricular fibrillation. When the switch S is toggled to the left, the capacitor C charges through the resistor R .When the switch is toggled to the right, the capacitor discharges current through the patient’s torso, modeled as the resistor Rtorso, allowing the heart’s normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 8.00 µF and ε = 1250 V, find the value of R required to charge the capacitor to a voltage of 775 V in 1.50 s. (b) If the capacitor is then discharged across the patient’s torso with, Rtorso = 1250 Ω, calculate the voltage across the capacitor after 5.00 ms.
Slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.
No chatgpt pls will upvote
A positive charge of 91 is located 5.11 m to the left of a negative charge 92. The
charges have different magnitudes. On the line through the charges, the net
electric field is zero at a spot 2.90 m to the right of the negative charge. On this
line there are also two spots where the potential is zero. (a) How far to the left of
the negative charge is one spot? (b) How far to the right of the negative charge is
the other?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY