Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 24P
(a)
To determine
The wavelength of the fundamental mode of vibration of the string.
(b)
To determine
To explain: Whether the frequency of this mode can be calculated or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A taut string has a length of 2.60 m and is fixed at both ends. (a) Find the wavelength of the fundamental mode of vibration of the string. (b) Can you find the frequency of this mode? Explain why or why not.
A stretched string with fixed ends has a length of 67.0 cm.
(a) Calculate the wavelength of its fundamental mode of vibration
(that is its first harmonic) and its fifth harmonic.
(b) How many nodes does the fifth harmonic have? (discounting the
ends)
Wavelength first harmonic
cm
Wavelength fifth harmonic
cm
Number of nodes fifth harmonic =
A wire hangs vertically from a ceiling with a mass of 10kg attached to it's lower end. The wire is 0.50m long and weighs 25g. a) calculate the wave velocity along the wire and the wavelength and frequency of the fundamental mode of vibration. b) if the maximum transverse displacement of the wire in fundamental mode of vibration is 3.0 cm, calculate the largest values of velocity and acceleration that a particle of the wire can have
Chapter 18 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 18.1 - Prob. 18.1QQCh. 18.2 - Consider the waves in Figure 17.8 to be waves on a...Ch. 18.3 - When a standing wave is set up on a string fixed...Ch. 18.5 - Prob. 18.4QQCh. 18.5 - Prob. 18.5QQCh. 18 - Prob. 1OQCh. 18 - Prob. 2OQCh. 18 - Prob. 3OQCh. 18 - Prob. 4OQCh. 18 - Prob. 5OQ
Ch. 18 - Prob. 6OQCh. 18 - Prob. 7OQCh. 18 - Prob. 8OQCh. 18 - Prob. 9OQCh. 18 - Prob. 10OQCh. 18 - Prob. 11OQCh. 18 - Prob. 12OQCh. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - Prob. 6CQCh. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Two waves on one string are described by the wave...Ch. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Two pulses traveling on the same string are...Ch. 18 - Two identical loudspeakers are placed on a wall...Ch. 18 - Prob. 9PCh. 18 - Why is the following situation impossible? Two...Ch. 18 - Two sinusoidal waves on a string are defined by...Ch. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - Prob. 16PCh. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - A string that is 30.0 cm long and has a mass per...Ch. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - The fundamental frequency of an open organ pipe...Ch. 18 - Prob. 42PCh. 18 - An air column in a glass tube is open at one end...Ch. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62APCh. 18 - Prob. 63APCh. 18 - Prob. 64APCh. 18 - Prob. 65APCh. 18 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 18 - Prob. 67APCh. 18 - Prob. 68APCh. 18 - Prob. 69APCh. 18 - Review. For the arrangement shown in Figure...Ch. 18 - Prob. 71APCh. 18 - Prob. 72APCh. 18 - Prob. 73APCh. 18 - Prob. 74APCh. 18 - Prob. 75APCh. 18 - Prob. 76APCh. 18 - Prob. 77APCh. 18 - Prob. 78APCh. 18 - Prob. 79APCh. 18 - Prob. 80APCh. 18 - Prob. 81APCh. 18 - Prob. 82APCh. 18 - Prob. 83APCh. 18 - Prob. 84APCh. 18 - Prob. 85APCh. 18 - Prob. 86APCh. 18 - Prob. 87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- By what factor would you have to multiply the tension in a stretched string so as to double the wave speed? Assume the string does not stretch. (a) a factor of 8 (b) a factor of 4 (c) a factor of 2 (d) a factor of 0.5 (e) You could not change the speed by a predictable factor by changing the tension.arrow_forwardA string with a mass m = 8.00 g and a length L = 5.00 m has one end attached to a wall; the other end is draped over a small, fixed pulley a distance d = 4.00 m from the wall and attached to a hanging object with a mass M = 4.00 kg as in Figure P14.21. If the horizontal part of the string is plucked, what is the fundamental frequency of its vibration? Figure P14.21arrow_forwardThe overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends. (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent anti-nodes for this mode of vibration.arrow_forward
- As in Figure P18.16, a simple harmonic oscillator is attached to a rope of linear mass density 5.4 102 kg/m, creating a standing transverse wave. There is a 3.6-kg block hanging from the other end of the rope over a pulley. The oscillator has an angular frequency of 43.2 rad/s and an amplitude of 24.6 cm. a. What is the distance between adjacent nodes? b. If the angular frequency of the oscillator doubles, what happens to the distance between adjacent nodes? c. If the mass of the block is doubled instead, what happens to the distance between adjacent nodes? d. If the amplitude of the oscillator is doubled, what happens to the distance between adjacent nodes? FIGURE P18.16arrow_forwardA taut rope has a mass of 0.180 kg and a length of 3.60 m. What power must be supplied to the rope so as to generate sinusoidal waves having an amplitude of 0.100 m and a wavelength of 0.500 m and traveling with a speed of 30.0 m/s?arrow_forwardThe equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forward
- A stretched string fixed at each end has a mass of 40.0 g and a length of 8.00 m. The tension in the string is 49.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (b) What is the vibration frequency for this harmonic?arrow_forwardA source vibrating at constant frequency generates a sinusoidal wave on a string under constant tension. If the power delivered to the string is doubled, by what factor does the amplitude change? (a) a factor of 4 (b) a factor of 2 (c) a factor of 2 (d) a factor of 0.707 (e) cannot be predictedarrow_forwardA standing wave on a string is described by the equation y(x, t) = 1.25 sin(0.0350x) cos(1450t), where x is in centimeters, t is in seconds, and the resulting amplitude is in millimeters. a. What is the length of the string if this standing wave represents the first harmonic vibration of the string? b. What is the speed of the wave on this string?arrow_forward
- A string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forwardThe wave function for a pulse on a rope is given by y(x,t)=0.43(x13.6t)2+1 where all constants are in the appropriate SI units. Sketch the wave profile for a. the incident pulse, b. the reflected pulse if the end is free, and c. the reflected pulse if the end is fixed.arrow_forwardA copper wire has a radius of 200 µ m and a length of 5.0 m. The wire is placed under a tension of 3000 N and the wire stretches by a small amount. The wire is plucked and a pulse travels down the wire. What is the propagation speed of the pulse? (Assume the temperature does not change: (=8.96gcm3,Y=1.11011Nm) .)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY