Calculate
Interpretation:
The standard entropy changesin thesurroundings of the given reaction and spontaneity of the given reactionis to be determined.
Concept introduction:
Entropy is the direct measurement of randomness or disorder. Entropy is an extensive property and it is a state function.
The enthalpy of the system is defined as the sum of the internal energy and the product of the pressure and volume. Enthalpy is a state of function and an extensive property.
Change in entropy of the system is the difference between the entropy of the final state and the entropy of the initial state.
The entropy of a system and the entropy of the surroundings comprise the entropy of the universe.
Enthalpy change of a reaction is the difference between the enthalpies of the reactants and the products.
For a spontaneous reaction,
Answer to Problem 20QP
Solution:
a)
The reaction is spontaneous.
b)
The reaction is not spontaneous.
c)
The reaction is spontaneous.
Explanation of Solution
a)
The entropy change of the universe, for this reaction, is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction
Here,
The enthalpy of reaction is as follows:
From appendix
Substitute the standard enthalpy change of the formationvalues of the substancesin the above expression,
Substitute the values of
Therefore, the entropy change of the system is
Calculate the entropy change for the system.
The entropy change for the system is calculated using the following expression:
Here,
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
From appendix 2, the standard entropy value of the substance is as follows:
Substitute the standard entropy values of the substance in the above expression,
The entropy change of the universe is calculated using the following expression:
Substitute the values of
Therefore, entropy change of the universe for this reaction is
For a spontaneous of reaction, the value of
The entropy change of the universe for this reaction is positive.
Therefore, the reaction is spontaneous.
b)
The entropy change of the universe for this reaction is calculated using the followingexpression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction
Here,
The enthalpy change for the reaction is as follows:
From appendix 2, the standard enthalpy change of the formation of the substance is as follows:
Substitute the standard enthalpy change of the formation value of the substance in the above expression,
The standard entropy change for this reaction is calculated using the followingexpression:
Substitute the value of
Therefore, the entropy change of the system is
Calculate the entropy change for the system.
The entropy change for the system is calculated using the following expression:
Here,
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the followingexpression:
Here,
From appendix 2, the standard entropy value of the substance is as follows:
Substitute the standard entropy value of the substance in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculate using the following expression:
Substitute the value of
Therefore, entropy change of the universe for this reaction is
For a spontaneous reaction, the value of
The entropy change of the universe for this reaction is negative.
Therefore, the reaction is not spontaneous.
c)
Calculate entropy change of the universe for the given reaction.
The entropy change of the universe for this reaction is calculated using the following expression:
Here,
The enthalpy change of the system
The standard enthalpy change of the reaction,
Here,
From appendix 2, the standard enthalpy change of the formation of the substance is as follows:
Substitute the standard enthalpy change of the formation value of the substance in the above expression,
The standard entropy change for this reaction is calculated using the followingexpression:
Substitute the values of
Therefore, the entropy change of the system is
Calculate the standard entropy change of the given reaction.
The standard entropy change for this reaction is calculated using the following expression:
Here,
From appendix 2, the standard entropy value of the substance is as follows:
Substitute the values of standard entropy value of the substances in the above expression,
Therefore, the standard entropy change for this reaction is
Calculate the entropy change of the universe.
The entropy change of the universe is calculated using the following expression:
Substitute the values of
Therefore, entropy change of the universe for this reaction is
For a spontaneous reaction, the value of
The entropy change of the universe for this reaction is positive.
Therefore, the reaction is spontaneous.
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry
- Try: Draw the best Lewis structure showing all non-bonding electrons and all formal charges if any: (CH3)3CCNO NCO- HN3 [CH3OH2]*arrow_forwardWhat are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardZeolites. State their composition and structure. Give an example.arrow_forward
- Don't used hand raiting and show all reactionsarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardIX) By writing the appropriate electron configurations and orbital box diagrams briefly EXPLAIN in your own words each one of the following questions: a) The bond length of the Br2 molecule is 2.28 Å, while the bond length of the compound KBr is 3.34 Å. The radius of K✶ is 1.52 Å. Determine the atomic radius in Å of the bromine atom and of the bromide ion. Br = Br b) Explain why there is a large difference in the atomic sizes or radius of the two (Br and Br). Tarrow_forward
- When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forwardWhen 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol. Which experimental number must be initialled by the Lab TA for the first run of Part 1 of the experiment? a) the heat capacity of the calorimeter b) Mass of sample c) Ti d) The molarity of the HCl e) Tfarrow_forwardPredict products for the Following organic rxn/s by writing the structurels of the correct products. Write above the line provided" your answer D2 ①CH3(CH2) 5 CH3 + D₂ (adequate)" + 2 mited) 19 Spark Spark por every item. 4 CH 3 11 3 CH 3 (CH2) 4 C-H + CH3OH CH2 CH3 + CH3 CH2OH 0 CH3 fou + KMnDy→ C43 + 2 KMn Dy→→ C-OH ") 0 C-OH 1110 (4.) 9+3 =C CH3 + HNO 3 0 + Heat> + CH3 C-OH + Heat CH2CH3 - 3 2 + D Heat H 3 CH 3 CH₂ CH₂ C = CH + 2 H₂ → 2 2arrow_forward
- When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forwardQ6: Using acetic acid as the acid, write the balanced chemical equation for the protonation of the two bases shown (on the -NH2). Include curved arrows to show the mechanism. O₂N- O₂N. -NH2 -NH2 a) Which of the two Bronsted bases above is the stronger base? Why? b) Identify the conjugate acids and conjugate bases for the reactants. c) Identify the Lewis acids and bases in the reactions.arrow_forwardQ5: For the two reactions below: a) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. b) Label Bronsted acids and bases in the left side of the reactions. c) For reaction A, which anionic species is the weakest base? Which neutral compound is the stronger acid? Is the forward or reverse reaction favored? d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. 용 CH3OH я хон CH3O OH B. HBr CH3ONa NaBr CH3OHarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning