Outline the steps involved in processing (a) ceramic and (b) glasses.
a)
Outline the steps involved in processing of ceramics and (b) glasses.
Explanation of Solution
Steps of Ceramics Processing:-
Step #1: Milling & Raw Material Procurement
The raw materials used in the process are milled materials typically found in mining sites that have been reduced from a larger size to a smaller size or even in some cases, it will be pulverized depends upon the end product required.
Step #2: Sizing
Here it is! During this step of the processing sequence, the materials which have gone through the milling, as well as the procurement process should be sized in order to separate the material desirable, from the ones non-usable. By means of controlling the size of the particle, it would result in a proper bonding along with a smooth surface of the finished product.
Step #3: Batching
This part of the process may be called “blending”. It calculates weighing, amounts and an initial blend of the raw materials. To have a material flow consistently into a pub mill hopper, in this process, Vibratory Feeders may be applied if you are having a lighter load capacity and the dusty hazardous environment.
Step #4: Mixing
To get a more physically and chemically homogeneous material before forming, the ceramic powder constituents are combined applying the process of blinging or mixing. Pug mills are the most favored piece of machinery utilized in the concerned step of the process while dealing with dry mixes.
Step #5: Forming
For forming, the materials including pastes, dry powders, or slurries are first consolidated, then molded to form a cohesive body of the desired end product. When it comes to dry forming, to get the desired shape, vibratory compaction may be used.
Step #6: Drying
The formed materials not only hold water but also a binder in its mix. This may lead to shrinkage, distortion, or warping of the product. Usually, convection drying happens to be the most used method where heated air gets circulated around the piece of ceramic which lessens the risk of those imperfections in the finished product.
Step #7: Glazing
This step is added to the process prior to firing. Typically, the glaze consists of oxides that give the product the desired finish look. All the raw materials are grounded in an attrition mill and ball mill. Customers are provided withVibratory Screeners which screened the glaze for giving the mixture a consistency which is not just uniform, but when applied to any of the ceramics, would be even and smooth. The glaze may be applied by dipping or spraying.
Step #8: Firing
The ceramics pass through a controlled heat process where the oxides are consolidated into a dense, cohesive body made up of uniform grain.
b)
Outline the steps involved in processing of glasses.
Explanation of Solution
Steps involved in processing glasses:-
Step #1: Melting and Refining
In order to make clear glass, the right set of raw materials is required. It comprises of Na2O (sodium oxide) from soda ash, SiO2 (silica sand), MgO (dolomite),CaO (calcium oxide) from limestone/dolomite, and Al2O3 (feldspar). The ingredients get mixed in their right proportions. The entire batch gets flown into a furnace that is heated as much as to 1500 degree Celsius.
Step #2: Float bath
From the furnace, the molten material goes into the float bath comprising of a mirror-like surface created from the molten tin. This material, then, flows into the bath at 1500 degree Celsius. It leaves the bath approximately at 650 degree Celsius. At the exit, its shape looks like a solid ribbon.
Step #3: Coating for reflective glass
If a reflective glass surface which helps in having the indoors cooler, is produced, then the procedures of coating are followed where either a soft or a hard coat gets applied on the ribbon surface which was cooled at high temperatures.
Step #4: Annealing
For removing the internal stresses built up in the glass, a procedure known as annealing is conducted. The procedure helps the glass ribbon to get through a layer that gets rid of any stresses on the surface of the glass, gradually cooling it to create the final hardened form. Because of it, cutting the glass and shaping it accordingly become easier.
Step #5: Inspecting
Through advanced and acute inspection technology, over 100 million inspections may be conducted throughout the glass manufacturing process for identifying stresses, air bubbles, or grains of sand which refuse to melt. It is vital in quality-proofing the finished form of glass.
Step #6: Cutting to order
Diamond steels are used to trim and cut the glass ribbons into square shapes.
Want to see more full solutions like this?
Chapter 18 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
- First monthly exam Gas dynamics Third stage Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in 300 m length. Determine the flow rate in pipe. Use moody chart. Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe ( = 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 × 10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart (1) MIDAS Kel=0.3 Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e = 1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses. .μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³arrow_forward2/Y Y+1 2Cp Q1/ Show that Cda Az x P1 mactual Cdf Af R/T₁ 2pf(P1-P2-zxgxpf) Q2/ A simple jet carburetor has to supply 5 Kg of air per minute. The air is at a pressure of 1.013 bar and a temperature of 27 °C. Calculate the throat diameter of the choke for air flow velocity of 90 m/sec. Take velocity coefficient to be 0.8. Assume isentropic flow and the flow to be compressible. Quiz/ Determine the air-fuel ratio supplied at 5000 m altitude by a carburetor which is adjusted to give an air-fuel ratio of 14:1 at sea level where air temperature is 27 °C and pressure is 1.013 bar. The temperature of air decreases with altitude as given by the expression The air pressure decreases with altitude as per relation h = 19200 log10 (1.013), where P is in bar. State any assumptions made. t = ts P 0.0065harrow_forward36 2) Use the method of MEMBERS to determine the true magnitude and direction of the forces in members1 and 2 of the frame shown below in Fig 3.2. 300lbs/ft member-1 member-2 30° Fig 3.2. https://brightspace.cuny.edu/d21/le/content/433117/viewContent/29873977/Viewarrow_forward
- Can you solve this for me?arrow_forward5670 mm The apartment in the ground floor of three floors building in Fig. in Baghdad city. The details of walls, roof, windows and door are shown. The window is a double glazing and air space thickness is 1.3cm Poorly Fitted-with Storm Sash with wood strip and storm window of 0.6 cm glass thickness. The thickness of door is 2.5 cm. The door is Poor Installation. There are two peoples in each room. The height of room is 280 cm. assume the indoor design conditions are 25°C DBT and 50 RH, and moisture content of 8 gw/kga. The moisture content of outdoor is 10.5 gw/kga. Calculate heat gain for living room : الشقة في الطابق الأرضي من مبنى ثلاثة طوابق في مدينة بغداد يظهر في مخطط الشقة تفاصيل الجدران والسقف والنوافذ والباب. النافذة عبارة عن زجاج مزدوج وسمك الفراغ الهوائي 1.3 سم ضعيف الاحكام مع ساتر حماية مع إطار خشبي والنافذة بسماكة زجاج 0.6 سم سماكة الباب 2.5 سم. الباب هو تركيب ضعيف هناك شخصان في كل غرفة. ارتفاع الغرفة 280 سم. افترض أن ظروف التصميم الداخلي هي DBT25 و R50 ، ومحتوى الرطوبة 8…arrow_forwardHow do i solve this problem?arrow_forward
- Q4/ A compressor is driven motor by mean of a flat belt of thickness 10 mm and a width of 250 mm. The motor pulley is 300 mm diameter and run at 900 rpm and the compressor pulley is 1500 mm diameter. The shaft center distance is 1.5 m. The angle of contact of the smaller pulley is 220° and on the larger pulley is 270°. The coefficient of friction between the belt and the small pulley is 0.3, and between the belt and the large pulley is 0.25. The maximum allowable belt stress is 2 MPa and the belt density is 970 kg/m³. (a) What is the power capacity of the drive and (b) If the small pulley replaced by V-grooved pulley of diameter 300 mm, grooved angle of 34° and the coefficient of friction between belt and grooved pulley is 0.35. What will be the power capacity in this case, assuming that the diameter of the large pulley remain the same of 1500 mm.arrow_forwardYou are tasked with designing a power drive system to transmit power between a motor and a conveyor belt in a manufacturing facility as illustrated in figure. The design must ensure efficient power transmission, reliability, and safety. Given the following specifications and constraints, design drive system for this application: Specifications: Motor Power: The electric motor provides 10 kW of power at 1,500 RPM. Output Speed: The output shaft should rotate at 150 rpm. Design Decisions: Transmission ratio: Determine the necessary drive ratio for the system. Shaft Diameter: Design the shafts for both the motor and the conveyor end. Material Selection: Choose appropriate materials for the gears, shafts. Bearings: Select suitable rolling element bearings. Constraints: Space Limitation: The available space for the gear drive system is limited to a 1-meter-long section. Attribute 4 of CEP Depth of knowledge required Fundamentals-based, first principles analytical approach…arrow_forward- | العنوان In non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and v.-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: ti: final thickness V. Fig. (1) ofthrearrow_forward
- A direct extrusion operation produces the cross section shown in Fig. (2) from an aluminum billet whose diameter 160 mm and length - 700 mm. Determine the length of the extruded section at the end of the operation if the die angle -14° 60 X Fig. (2) Note: all dimensions in mm.arrow_forwardFor hot rolling processes, show that the average strain rate can be given as: = (1+5)√RdIn(+1)arrow_forward: +0 usão العنوان on to A vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2R. Take: -9.81 mis ۲/۱ ostrararrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY