PHYSICS:PRINCIPLES W/ APPLICATIONS
7th Edition
ISBN: 2818440037979
Author: GIANCOLI
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 1Q
When an electric cell is connected to a circuit, electrons flow away from the negative terminal in the circuit. But within the cell, electrons flow to the negative terminal. Explain.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
TICE D
Conservation of Momentum
1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle
breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a
direction away from the shuttle with a speed of 12.0 m/s, propelling the
astronaut back to the shuttle. Assuming that the astronaut starts from rest
with respect to the shuttle, find the astronaut's final speed with respect to
the shuttle after the tank is thrown.
2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest
on the west side of the dock. If the velocity of the fisherman is 4.30 m/s
to the west as he leaves the dock, what is the final velocity of the fisher-
man and the boat?
3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling
at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls
slide on a frictionless surface and all collisions are head-on, find the final
speed of the blue ball in each of the following situations:
a. The green…
The 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2.
0.632/
C A L
(a)
0.368/
0+
0 = L/R 2T
3r 4
(b)
(a) What is the initial energy (in J) in the inductor?
0 t = L/R 2t
(c)
Эт 4t
19.89
]
(b) How long will it take (in s) the current to decline to 5.00% of its initial value?
2.09
S
(c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor.
28.5
1.96
x W
X (ratio of initial power to average power)
Imagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.
Chapter 18 Solutions
PHYSICS:PRINCIPLES W/ APPLICATIONS
Ch. 18 - Prob. 1OQCh. 18 - When an electric cell is connected to a circuit,...Ch. 18 - When a flashlight is operated, what is being used...Ch. 18 - Prob. 3QCh. 18 - Prob. 4QCh. 18 - Prob. 5QCh. 18 - Prob. 6QCh. 18 - What happens when aIightbulb burns out?Ch. 18 - Prob. 8QCh. 18 - Prob. 9Q
Ch. 18 - Prob. 10QCh. 18 - Prob. 11QCh. 18 - Prob. 12QCh. 18 - Prob. 13QCh. 18 - When electric lights are operated on low-frequency...Ch. 18 - Prob. 15QCh. 18 - Prob. 16QCh. 18 - Prob. 17QCh. 18 - Prob. 18QCh. 18 - Prob. 19QCh. 18 - Prob. 20QCh. 18 - Prob. 1MCQCh. 18 - Prob. 2MCQCh. 18 - Prob. 3MCQCh. 18 - Prob. 4MCQCh. 18 - Prob. 5MCQCh. 18 - Prob. 6MCQCh. 18 - Prob. 7MCQCh. 18 - Prob. 8MCQCh. 18 - Prob. 9MCQCh. 18 - Prob. 10MCQCh. 18 - Prob. 11MCQCh. 18 - A current of 1.60 A flows in a wire. How many...Ch. 18 - A service station charges a battery using a...Ch. 18 - Prob. 3PCh. 18 - What is the resistance of a toaster if 120 V...Ch. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - (a) What is the current in the element of an...Ch. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - A 4.5-V battery is connected to a bulb whose...Ch. 18 - Prob. 11PCh. 18 - What is the diameter of a 1.00-m length of...Ch. 18 - What is the resistance of a 5.4-m length of copper...Ch. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - A certain copper wire has a resistance of 15.0 ....Ch. 18 - Compute the voltage drop along a 21-m length of...Ch. 18 - Two aluminum wires have the same resistance. If...Ch. 18 - Prob. 19PCh. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - A 10.0-m length of wire consists of 5.0 m of...Ch. 18 - What is the maximum power consumption of a 3.0-V...Ch. 18 - The heating element of an electric oven is...Ch. 18 - What is the maximum voltage that can be applied...Ch. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - A 120-V hair dryer has two settings: 950 W and...Ch. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - The current in an electromagnet connected to a...Ch. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Determine (a) the maximum instantaneous power...Ch. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - A 4.80-m length of 2.0-mm-diameter wire carries a...Ch. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61GPCh. 18 - Prob. 62GPCh. 18 - Prob. 63GPCh. 18 - Prob. 64GPCh. 18 - Prob. 65GPCh. 18 - Prob. 66GPCh. 18 - A small city requires about 15 MW of power Suppose...Ch. 18 - Prob. 68GPCh. 18 - Prob. 69GPCh. 18 - Prob. 70GPCh. 18 - Prob. 71GPCh. 18 - Prob. 72GPCh. 18 - Prob. 73GPCh. 18 - V is applied to two different conductors made of...Ch. 18 - Prob. 75GPCh. 18 - Prob. 76GPCh. 18 - Prob. 77GPCh. 18 - A 15 2-?resistor is made from a coil of copper...Ch. 18 - Prob. 79GPCh. 18 - Prob. 80GPCh. 18 - Prob. 81GPCh. 18 - Prob. 82GPCh. 18 - Prob. 83GPCh. 18 - Prob. 84GPCh. 18 - Prob. 85GPCh. 18 - If a wire of resistance R is stretched uniformly...Ch. 18 - Prob. 87GPCh. 18 - Prob. 88GPCh. 18 - Prob. 89GPCh. 18 - Prob. 90GPCh. 18 - Prob. 91GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
28. Consider the reaction
Express the rate of the reaction in terms of the change in concentration of e...
Chemistry: Structure and Properties (2nd Edition)
EVOLUTION CONNECTION Describe how gene flow, genetic drift, and natural sclection all can influence macroevolut...
Campbell Biology (11th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexamplearrow_forwardA futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their accelerationarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forward
- Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forwardAt a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?arrow_forwardA hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forward
- A point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.60 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Find the direction of this electric field.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod? Express your answer in terms of λ, r, and ϵ0, the permittivity of free space. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?arrow_forwardA very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?arrow_forward
- Two small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?arrow_forwardA conducting spherical shell with inner radius aa and outer radius bb has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r<a. Express your answer in terms of some or all of the variables Q, a, b, and appropriate constants. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region a<r<b. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region r>b. What is the surface charge density on the inner surface of the conducting shell? What is the surface charge density on the outer surface of the conducting shell?arrow_forwardA small sphere with a mass of 3.00×10−3 g and carrying a charge of 4.80×10−8 C hangs from a thread near a very large, charged insulating sheet, as shown in the figure (Figure 1). The charge density on the sheet is −2.20×10−9 C/m2 . Find the angle of the thread.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY