Engineering Fundamentals: An Introduction to Engineering
Engineering Fundamentals: An Introduction to Engineering
6th Edition
ISBN: 9780357391273
Author: Saeed Moaveni
Publisher: Cengage Learning US
Question
Book Icon
Chapter 18, Problem 1P
To determine

Find the stiffness of each spring and the stiffest spring.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The stiffness of each spring is kA=2.5Nmm, kB=4Nmm, and kC=1Nmm, the stiffest spring is Spring B.

Explanation of Solution

Formula used:

Formula used to calculate the spring force is,

F=kx (1)

Here,

k is the stiffness factor or spring constant,

x is the deflection.

Calculation:

Refer to figure Problem 18.1 in textbook, the graph with force-deflection relationships for three springs A, B and C are given.

Rearrange equation (1) to find k.

k=Fx (2)

Refer to Figure Problem 18.1 in textbook,

For spring A,

At xA=4mm, FA=10N

For spring B,

At xB=10mm, FB=40N

For spring C,

At xC=10mm, FC=10N

Substitute kA for k, 10N for F, and 4mm for x in equation (2),

kA=10N4mm=2.5Nmm (3)

Substitute kB for k, 40N for F, and 10mm for x in equation (2),

kB=40N10mm=4Nmm (4)

Substitute kC for k, 10N for F, and 10mm for x in equation (2),

kC=10N10mm=1Nmm (5)

Comparing the values in equation (3), (4) and (5), the spring B is the stiffest spring.

Therefore, the stiffness of each spring is kA=2.5Nmm, kB=4Nmm, and kC=1Nmm, the stiffest spring is spring B.

Conclusion:

Thus, the stiffness of each spring is kA=2.5Nmm, kB=4Nmm, and kC=1Nmm, the stiffest spring is spring B.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
the tied three-hinged arch is subjected to the loadings shown.  Determine the components of reaction at A and C and the tension in the cable
Calculate internal moments at D and E for beam CDE showing all working.  Assume the support at A is a roller and B is a pin.  There are fixed connected joints at D and E.  Assume P equals 9.6 and w equals 0.36
Determine the heel and toe stresses and the factor of safeties for sliding and overturning for the gravity dam section shown in the figure below for the following loading conditions: - - - - - Horizontal earthquake (Kh) = 0.1 Normal uplift pressure with gallery drain working Silt deposit up to 30 m height No wave pressure and no ice pressure Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³ - Submerged weight of silt = 0.9 Ton/m³ - Coefficient of friction = 0.65 and angle of repose = 25° Solve this question with the presence of gallery and without gallery., discuss the issue in both cases.... 144 m 4m 8m 6m Wi 8m +7m. 120m

Chapter 18 Solutions

Engineering Fundamentals: An Introduction to Engineering

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,