Concept explainers
Consider a galvanic cell composed of the SHE and a half-cell using the reaction Ag+(aq) + e− → Ag(s). (a) Calculate the standard cell potential. (b) What is the spontaneous cell reaction under standard-state conditions? (c) Calculate the cell potential when [H+] in the hydrogen electrode is changed to (i) 1.0 × 10−2 M and (ii) 1.0 × 10−5 M, all other reagents being held at standard-state conditions. (d) Based on this cell arrangement, suggest a design for a pH meter.
(a)
Interpretation:
The standard electrode potential of the given cell and the spontaneous chemical reaction in the cell has to be found. The cell potential of the given cell has to be found with the different concentrations of the hydrogen ion and a design for the
Concept Introduction:
Galvanic cell is an electrochemical cell which converts the chemical energy of a reaction into electrical energy.
Standard hydrogen electrode (SHE) is a reference electrode whose potential is considered to be zero volts. The potential of any other electrode is found by comparing with the SHE.
The standard electrode potential of a cell
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
Answer to Problem 18.76QP
The standard electrode potential of the cell is found to be
Explanation of Solution
To calculate the standard electrode potential of the cell
The standard electrode potential of the cell is the difference in standard electrode potential of the cathode and anode.
In order to determine the standard electrode potential we need to find out the half cell reactions in the cathode and anode of the given electrode.
The half cell reactions are
The standard electrode potential is calculated as given below
(b)
Interpretation:
The standard electrode potential of the given cell and the spontaneous chemical reaction in the cell has to be found. The cell potential of the given cell has to be found with the different concentrations of the hydrogen ion and a design for the
Concept Introduction:
Galvanic cell is an electrochemical cell which converts the chemical energy of a reaction into electrical energy.
Standard hydrogen electrode (SHE) is a reference electrode whose potential is considered to be zero volts. The potential of any other electrode is found by comparing with the SHE.
The standard electrode potential of a cell
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
Answer to Problem 18.76QP
The spontaneous reaction taking place in the cell is the reduction of silver ion and oxidation of hydrogen gas.
Explanation of Solution
To write the spontaneous cell reaction under the given standard conditions
In the given cell composed of standard hydrogen electrode and silver electrode, The silver ions in the solution will be reduced into solid silver and the hydrogen molecules will be oxidised into hydrogen ions.
(c)
Interpretation:
The standard electrode potential of the given cell and the spontaneous chemical reaction in the cell has to be found. The cell potential of the given cell has to be found with the different concentrations of the hydrogen ion and a design for the
Concept Introduction:
Galvanic cell is an electrochemical cell which converts the chemical energy of a reaction into electrical energy.
Standard hydrogen electrode (SHE) is a reference electrode whose potential is considered to be zero volts. The potential of any other electrode is found by comparing with the SHE.
The standard electrode potential of a cell
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
Answer to Problem 18.76QP
(i) The electrode potential, when the concentration of hydrogen ion is
(ii) The electrode potential, when the concentration of hydrogen ion is
Explanation of Solution
(i)
To calculate the electrode potential when the concentration of hydrogen ion is
The electrode potential of the cell can be calculated using the Nernst equation.
Where,
In the standard state all the species will have concentration equal to unity. In this case only the concentration of hydrogen ion is changed. On plugging in the concentration of the oxidised and reduced species to the given equation the electrode potential of the cell can be calculated.
(ii)
To calculate the electrode potential when the concentration of hydrogen ion is
The electrode potential of the cell can be calculated using the Nernst equation.
Where
In the standard state all the species will have concentration equal to unity. In this case only the concentration of hydrogen ion is changed. On plugging in the concentration of the oxidised and reduced species to the given equation the electrode potential of the cell can be calculated.
(d)
Interpretation:
The standard electrode potential of the given cell and the spontaneous chemical reaction in the cell has to be found. The cell potential of the given cell has to be found with the different concentrations of the hydrogen ion and a design for the
Concept Introduction:
Galvanic cell is an electrochemical cell which converts the chemical energy of a reaction into electrical energy.
Standard hydrogen electrode (SHE) is a reference electrode whose potential is considered to be zero volts. The potential of any other electrode is found by comparing with the SHE.
The standard electrode potential of a cell
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
Answer to Problem 18.76QP
The given cell is sensitive to the hydrogen in concentration. Hence it can be used as the
Explanation of Solution
To suggest a design for a
From the results obtained in the question (c) it is clear that the given cell itself can be used as a
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry
- Q5. Predict the organic product(s) for the following transformations. If no reaction will take place (or the reaction is not synthetically useful), write "N.R.". Determine what type of transition state is present for each reaction (think Hammond Postulate). I Br₂ CH3 F2, light CH3 Heat CH3 F₂ Heat Br2, light 12, light CH3 Cl2, light Noarrow_forwardNonearrow_forwardIn the phase diagram of steel (two components Fe and C), region A is the gamma austenite solid and region B contains the gamma solid and liquid. Indicate the degrees of freedom that the fields A and B have,arrow_forward
- For a condensed binary system in equilibrium at constant pressure, indicate the maximum number of phases that can exist.arrow_forwardPart V. Label ad match the carbons in compounds Jane and Diane w/ the corresponding peak no. in the Spectra (Note: use the given peak no. To label the carbons, other peak no are intentionally omitted) 7 4 2 -0.13 -0.12 -0.11 -0.10 -0.08 8 CI Jane 1 -0.09 5 210 200 190 180 170 160 150 140 130 120 110 100 -8 90 f1 (ppm) 11 8 172.4 172.0 f1 (ppr HO CI NH Diane 7 3 11 80 80 -80 -R 70 60 60 2 5 -8 50 40 8. 170 160 150 140 130 120 110 100 90 -0 80 70 20 f1 (ppm) 15 30 -20 20 -60 60 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.00 -0.01 10 -0.17 16 15 56 16 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 17.8 17.6 17.4 17.2 17.0 f1 (ppm) -0.03 -0.02 550 106 40 30 20 20 -0.01 -0.00 F-0.01 10 0arrow_forwardConsider the reaction of 2-methylpropane with a halogen. With which halogen will the product be almost exclusively 2-halo-2-methylpropane? 1. F2 2. Cl2 3. Br2 4. I2arrow_forward
- Nonearrow_forwardNonearrow_forwardn Feb 3 A T + 4. (2 pts) Draw the structure of the major component of the Limonene isolated. Explain how you confirmed the structure. 5. (2 pts) Draw the fragment corresponding to the base peak in the Mass spectrum of Limonene. 6. (1 pts) Predict the 1H NMR spectral data of R-Limonene. Proton NMR: 5.3 pon multiplet (H Ringarrow_forward
- Part VI. Ca H 10 O is the molecular formula of compound Tom and gives the in the table below. Give a possible structure for compound Tom. 13C Signals summarized C1 C2 C3 C4 C5 C6 C7 13C shift (ppm) 23.5 27.0 33.0 35.8 127 162 205 DEPT-90 + DEPT-135 + +arrow_forward2. Using the following data to calculate the value of AvapH o of water at 298K. AvapH o of water at 373K is 40.7 kJ/mol; molar heat capacity of liquid water at constant pressure is 75.2J mol-1 K-1 and molar heat capacity of water vapor at constant pressure is 33.6 J mol-1 K-1.arrow_forwardPart VII. Below are the 'HNMR 13 3 C-NMR, COSY 2D- NMR, and HSQC 20-NMR (Similar with HETCOR but axes are reversed) spectra of an organic compound with molecular formula C6H13 O. Assign chemical shift values to the H and c atoms of the compound. Find the structure. Show complete solutions. Predicted 1H NMR Spectrum ли 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 f1 (ppm)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning