
To determine:
Condensed structural formula for activated lauric acid

Explanation of Solution
The condensed structural formula is an easier way to explain the structure of any molecule as it draws lines between group of atoms attached together and do not draw all the bonds.
Hence, the condensed structural formula for the activated acrylic acid is given as follows:
To determine:
Alpha and beta carbon atom in lauroyl- CoA

Explanation of Solution
The alpha and beta positions are determined from adjacent to the
To determine:

Explanation of Solution
The number of beta oxidation cycle for the complete oxidation of lauric acid.
Beta oxidation is a process where the fatty acid is degraded or broken down from its beta carbon position.
Hence, the number of beta oxidation cycles required depends upon the number of carbon atoms present in the acid molecule.
Every two carbon atoms in any acid will produce one acetyl CoA molecule, so when the lauric acid has 12 carbon atoms, it will produce a total of six acetyl CoA molecules.
Further, the number of beta oxidation cycle is considered as one number less than the number of acetyl CoA produced.
Hence, the beta oxidation cycles will be five.
To determine:

Explanation of Solution
The number of acetyl CoA produced from the complete oxidation of lauric acid.
Beta oxidation is a process where the fatty acid is degraded or broken down from its beta carbon position.
Hence, the number of acetyl CoA produced depends upon the number of carbon atoms present in the acid molecule.
Every two carbon atoms in any acid will produce one acetyl CoA molecule, so when the lauric acid has 12 carbon atoms, it will produce a total of six acetyl CoA molecules.
To determine:
Total ATP yield from the given table:

Explanation of Solution
Lauric Acid is a C12 fatty acid and for the activation of lauric acid 2 ATP are required.
The acetyl group of the acetyl CoA is formed by two carbons. And in the last round two acetyl CoA are produced. Accordingly, the number of cycles of ß-oxidation and the number of acetyl CoA produced has been calculated.
From the complete ß-oxidation of lauric acid, total six (6) acetyl CoA, 5 NADH and 6 FADH2 has been produced. Each Acetyl CoA yields 10 ATP, each NADH yields 2.5 ATP and each FADH2 yields 1.5 ATP. Accordingly, ATP yield has been calculated.
Formula used: Number of cycles of ß-oxidation needed for the complete oxidation of fatty acid =
Where n = Number of carbon atoms present in fatty acid.
Number of acetyl CoA produced from the complete oxidation of fatty acid =
Where n = Number of carbon atoms present in fatty acid.
Calculation: Here, number of carbon atoms in the given fatty acid = 12. So, by putting n = 12
Number of cycles of ß-oxidation needed for the complete oxidation of fatty acid =
Therefore, number of acetyl CoA produced from the complete oxidation of fatty acid =
Activation | -2 ATP | |
Acetyl CoA | 60ATP | |
NADH | 12.5 ATP | |
FADH2 | 7.5 ATP | |
Total | 78 ATP |
- -carbon atoms in lauroyl-CoA is:
- The number of beta oxidation cycle for complete oxidation of lauric acid will be five.
- The number of acetyl CoA produced from the complete oxidation of lauric acid will be six.
Activation | -2 ATP | |
Acetyl CoA | 60ATP | |
NADH | 12.5 ATP | |
FADH2 | 7.5 ATP | |
Total | 78 ATP |
Want to see more full solutions like this?
Chapter 18 Solutions
EBK CHEMISTRY
- Name the structurearrow_forward> For each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) C 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy A F10arrow_forwardHow to draw this mechanism for the foloowing reaction in the foto. thank youarrow_forward
- Predict the major products of the following organic reaction: Some important notes: CN A? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. No reaction. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Centerarrow_forwardDraw the major product of the following reaction. Do not draw inorganic byproducts. H3PO4 OHarrow_forwardPredict the major products of this organic reaction: HBr (1 equiv) Δ ? Some important notes: • Draw the major product, or products, of this reaction in the drawing area below. • You can draw the products in any arrangement you like. • Pay careful attention to the reaction conditions, and only include the major products. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. • Note that there is only 1 equivalent of HBr reactant, so you need not consider the case of multiple additions. Explanation Check X ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacyarrow_forward
- For the structure below, draw the resonance structure that is indicated by the curved arrow(s). Be sure to include formal charges. :ÖH Modify the second structure given to draw the new resonance structure. Include lone pairs and charges in your structure. Use the + and - tools to add/remove charges to an atom, and use the single bond tool to add/remove double bonds.arrow_forwardUsing the table of Reactants and Products provided in the Hints section, provide the major product (with the correct stereochemistry when applicable) for questions below by selecting the letter that corresponds to the exact chemical structures for the possible product. OH conc Hydrochloric acid 40°C Temp A/arrow_forwardUsing arrows to designate the flow of electrons, complete the reaction below and provide a detailed mechanism for the formation of the product OH conc Hydrochloric acid 40°C Temp All chemical structures should be hand drawn on a piece of paper Paragraph BI UAE +varrow_forward
- draw out the following structures plesearrow_forwardDraw everything on a piece of paper outlining the synthesis from acetaldehyde to 2 cyclopentene carboxaldehyde using carbon based reagants with 3 carbons or fewers. Here is the attached image.arrow_forwardManoharan Mariappan, FR.D., 34) Complete the following reaction starting from hex-1-yne proceeding via different substitution reactions forming 2-heptanone. (25 pts). A Sia₂BH H₂O₂ NaOH Br D Mechanism for reaction D - ether-cleavage: 10 B Ph-MgCI, THF H₁₂O+ D HBr (XS) C TsCl, Py CH3-CH2-CH2-ONaarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





