Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18.41PP
To determine
The plot of weight flow rate and tank pressure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 3
Calculate the disposition, pipe diameter
and specific speed of a centrifugal pump,
the impeller rotation speed of 1750 rpm,
used in a sprinkler system with a pressure
of 280 kPa, a friction loss of 3.5 m, a
compressor velocity of 0.5 m, a static
drawdown of 3 m at the bottom of the
pump, and a static expulsion of 2 m at the
top of the pump. The pump has a capacity
of 6.35 kilowatts and an efficiency of 80%.
Centrifugal pump has differential pressure 15 bar and use to transport oil between two separators. If the
pressure at first separator is 4 bar calculate the pressure at second separator and NPSH.
Where:
Suction and discharge pipe diameters = 10 inch,
Suction pipe length = 16 m, ld
Oil level at first separator 3 m2d
Oil density=880 kg/m³ P
Oil flow rate=0.092 m³/sec
e
Pipe roughness= 0.045 mm
Discharge pipe length = 25 m O
Oil level at second separator = 5.5 m2d
Oil viscosity = 9.5 x 10³ Pa.s
Oil vapor pressure 22.5 kPa
d
кра
4.5x10²
Chapter 18 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 18 - A pipe in a compressed air system is carrying 2650...Ch. 18 - Prob. 18.2PPCh. 18 - Prob. 18.3PPCh. 18 - A duct in a heating system carries 8320 cfm....Ch. 18 - The velocity of flow in a ventilation duct is 1140...Ch. 18 - Prob. 18.6PPCh. 18 - Prob. 18.7PPCh. 18 - Prob. 18.8PPCh. 18 - Prob. 18.9PPCh. 18 - Prob. 18.10PP
Ch. 18 - Prob. 18.11PPCh. 18 - Describe a centrifugal fan with forward-curved...Ch. 18 - Prob. 18.13PPCh. 18 - Prob. 18.14PPCh. 18 - Name four types of positive-displacement...Ch. 18 - Name a type of compressor often used for pneumatic...Ch. 18 - Prob. 18.17PPCh. 18 - Prob. 18.18PPCh. 18 - Prob. 18.19PPCh. 18 - Compute the specific weight of nitrogen at 32...Ch. 18 - Compute the specific weight of air at 1260...Ch. 18 - Prob. 18.22PPCh. 18 - An air compressor delivers 820 cfm of free air....Ch. 18 - Prob. 18.24PPCh. 18 - Prob. 18.25PPCh. 18 - Prob. 18.26PPCh. 18 - Specify a size of Schedule 40 steel pipe suitable...Ch. 18 - For an aeration process, a sewage treatment plant...Ch. 18 - Prob. 18.29PPCh. 18 - Prob. 18.30PPCh. 18 - Prob. 18.31PPCh. 18 - Prob. 18.32PPCh. 18 - Prob. 18.33PPCh. 18 - Prob. 18.34PPCh. 18 - Prob. 18.35PPCh. 18 - Figure 18.14 iD shows a two-compartment vessel....Ch. 18 - Prob. 18.37PPCh. 18 - Prob. 18.38PPCh. 18 - Prob. 18.39PPCh. 18 - A tank of Refrigerant is at 150 kPa gage and 20C....Ch. 18 - Prob. 18.41PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Item#3 The oil tank for the hydraulic system of figure below is air-pressurized at 10psig. The inlet line to the pump is 10 ft below the oil level while point 3 is 2ft below pump inlet. The pump flow-rate is 30 gpm and has a power equal to0.5HP. Find the pressure at station 3if there is a 28ft head loss between station 1 and 3. OIL LEVEL SG 0.9 1.5-IN- INSIDE DIAMETER 10 FT STRAINER ELECTRIC MOTOR M 2 FT PUMP 3 Q-30 GPMarrow_forwardA pump draws 20 L/s of water from reservoir A to reservoir B. Assuming f = 0.013 for all pipes, compute the horsepower delivered by the pump. Pump elevation is at datum.Data as follows: Reservoir A to pump. L= 500 m, D = 200 mm, EL. = 15 m Pump to Reservoir B L= 1200 m, D = 150 mm, EL. = 60 marrow_forwardFind the loss in total pressure for each run in the simple duct system of Fig. 1, using the equal-friction method and in English unit. The total pressure available for the duct system is 0.12 in. wg (30 Pa), and the loss in total pressure for each diffuser at the specified flow rate is 0.02 in. wg (5 Pa). Duct fittings are listed in Table 1. Assume the duct dimeter in run 1 is 10 in. and the rest are 8 in. Does the duct system require any adjustment? 150 cfm e. a 15 ft Plenum е 15 ft 5 ft 5 ft a 3. 20 ft 4 10 ft 200 cfm e 10 ft 150 cfm b Duct Fittings for Figure 1 Fittings Type Abrupt Entrance 90 deg Elbow, Pleated Round to Rectangular boot, Straight 45 deg. Converging Wye 45 deg Elbow, Pleated a d earrow_forward
- A duct 0.40 m high and 0.80 m wide suspended from the ceiling in a corridor, makes a right angle turn in the horizontal plane. The inner radius is 0.2 m and the outer radius is 1.0 m measured from the same center. The velocity of air in the duct is 10 m/s. Compute the pressure drops in this elbow. Assuming friction factor of 0.3, density of 1.204 kg/m3 and length of 10 m. Group of answer choices 441 Pa 143 Pa 341 Pa 413 Pa please provide complete sollution for analysis and reviewarrow_forwardA large blower for a furnace delivers 47 000 ft/min (CFM) of air having a specific weight of 0.075 lb/ft³. Calculate the weight flow rate and mass flow rate.arrow_forwardplease do both 1.A liquid refrigerant (sg = 1.080) is flowing at a weight flow rate of 23.0 N/h. Required Calculate the mass flow rate in kg/s. (Note: Answer will be small, include 3 digits after at end of leading 0's). 2.When 2600 L/min of water flows through a circular section with an inside diameter of 275 mm that later reduces to a 155 mm diameter. Required Calculate the average velocity of flow in the larger section, to the nearest 1000th.arrow_forward
- 1. A pump pumping liquid propellant operates at 10,000 rpm. The volumetric flow rate through the pump is 5,000 gpm. The pressure drop across the pump is 750 psi. Propellant density is 71lbm/ft³. Calculate the head produced by the pump. b. Calculate the pump specific speed. Is this a high-performance pump or a low- performance pump? Calculate the input power to the fluid, i.e. the fluid horse power, fnp. а. С.arrow_forwardAnswer the problem correctly and provide complete and readable solutions. If you can explain the process (briefly), please do so. Thank you!arrow_forwardA single stage centrifugal pump has an impeller of 250 mm diameter which rotates at 1,800 rpm and lifts 60 lit/sec to 25 m with an efficiency of 70%. Obtain the number of stages and diameter of each impeller of a similar multi-stage pump to lift 75 lit/sec to 175 m at 1,500 rpm. (8 stages ; 280 mm dia)arrow_forward
- Q-3 The speed of water in a hose increased from 2 m/s to 25 m/s going from the hose to the nozzle. Calculate the gauge pressure in the hose, assuming level, frictionless flow.arrow_forwardUsing velocity reduction method, design the duct system. Take the velocity of air in main duct as 8m/sec, air density 1.2kg/m. Coranch = 0.4 Coutlet = 1 2. Using equal pressure drop method, design the duct system. Take Ap = 1pa/m, air density 1.2kg \m. Cranch = 0.4 Coutlet = 1arrow_forwardOil flows full bore at a velocity of 2m/s through a nest of 16 tubes in a single pass cooler. The internal diameter of the tubes is 30mm and the density of the oil is 0.85 g/ml. Find the Volume of the Flow in Litres/Second and the Mass of the Flow in Kilogram/Minute.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License