The scale of the USGS 7 1/2- minute quadrangle map
Answer to Problem 18.1P
1:24,000
Explanation of Solution
Given Information:
USGS 7 1/2 - minute quadrangle map
USGS map divides the area into quadrangle map shown by area in the terms of latitudes and longitudes within 2 lines. 7.5 minute shows the area bounded by 7.5-degree latitude and 7.5-degree longitude. Scale of 1:24,000 provides enough details through the quadrangle map.
Most of the natural features and geographical information is shown in the scale of 1:24,000 and these maps are generally used by engineers, architects, city planners, etc. Other maps with larger scale are also available such as 1:50,000 and 1:1,00,000 and these maps are preferred for management activities and land use pattern identification.
Want to see more full solutions like this?
Chapter 18 Solutions
Elementary Surveying: An Introduction to Geomatics (15th Edition)
- The force vector F has a magnitude of F = 450 lb and acts 15.7° with respect to vertical as at point A at an angle → = shown. The force F is balanced by the tension forces parallel to the two rods AC and AB such that the vector equation → F+F AC + FAB = 0 is satisfied. Determine the tension forces in the two rods in Cartesian Vector Notation. с a b B CC + BY NC SA 2013 Michael Swanbom A NF Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 5.9 ft b C 3 ft 3.1 ft FAC = FAB= ĵ) lb lb + +arrow_forwardF2 Y B V 5 4 3 F1 X F3 → The given forces are F₁ = 20 kN, F2= 28 kN, and F3 = 61 kN, with given ratio for F₁ and angles of B = 51° and y = 67°. Find the resultant force. First in Cartesian Vector Notation: FR = 2 + j) kN Then, find the magnitude and direction: magnitude in kN: kN conventional direction (counter clockwise from positive X axis) in degrees: degarrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- My desk has a weight of 193.044 lbf on the Earch's surface where the acceleration of gravity is 32.174 ft $2 What is its weight in pounds force (lbf) on Mars and its mass in pounds mass (lbm) on Mars where the acceleration of gravity is 5.35 ft $2 Weightmars = lbf, Massmars = Ibmarrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Please show all steps and give answers in the cartesian coordinate system providedarrow_forwardPlease show all stepsarrow_forward4. The layers of soil in a tube that is 150 mm by 100 mm in cross section is being supplied with water to maintain a constant head difference of 450 mm. The rate of flow is (ANSWER IN PROBLEM 3-C) Water supply h=450 mm hB Out flow Direction of flow Soil Soil Soil A B C 200 200 200 mm mm mm hд = 296 mm and KB = 5.13 x 10-3 cm/s (a) Compute the coefficient of permeability of soil A. (b) Compute the height h at the piezometer attached between B and C. Consider Soils A and B for this. (c) Compute the hydraulic gradient of soil C.arrow_forward
- Two solid cylindrical rods support a load of P =19kN. Determine the axial load in rod 1arrow_forwardHello and respectCan you tell me the source of these questions from which book or pamphlet thank youarrow_forwardA steel, possessing an eutectoid composition, undergoes a gradual cooling process from 800°C to 600°C. Outline the transformation, equilibrium microstructure, and provide approximate component proportions. Describe the resultant non-equilibrium microstructure in two scenarios: a) the steel is rapidly cooled from 800°C to 600°C within 1 s, and then held at such temperature; b) the steel is rapidly cooled from 800°C to 600°C within 1 s, maintained at this temperature for 5 s, and subsequently quenched to room temperature. Use the provided diagrams. Temperature (°C) 1600 1538°C 1493°C 1400 L 1394°C Y+L 1200- 1147°C 2.14 Y. Austenite 4.30 1000 912°C Y+ FeC 800 a 600 400 0 (Fe) 0.76 0.022 a, Ferrite 2 a + Fe3C 3 Composition (wt% C) 727°C Cementite (Fe3C) 4 5 6 6.7arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning