
Which of the following reactions has a decrease in entropy
a.
b.
c.
d.

(a)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases, this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
The reactant is dry ice that is in solid sate while the product represents gaseous

(b)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases, this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
Here the phase transition does not occur however the number of atoms is more in the product side so there is more randomness in the product side so

(c)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
It can be observed that the reactant includes only they solid

(c)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
Dissolution is phenomenon where the ionic lattice is disrupted and the ion gets solvated. Usually such solvation results in increases in randomness and thus,
Answer to Problem 18.1P
Yes,
Explanation of Solution
Given information:
The reaction is given as follows:
It can be observed that reactants include aqueous ions that are hydrated and are in a more disordered state the solid
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry, Loose-leaf Edition (8th Edition)
- Consider a chromatography column in which Vs= Vm/5. Find the retention factor if Kd= 3 and Kd= 30.arrow_forwardTo improve chromatographic separation, you must: Increase the number of theoretical plates on the column. Increase the height of theoretical plates on the column. Increase both the number and height of theoretical plates on the column. Increasing the flow rate of the mobile phase would Increase longitudinal diffusion Increase broadening due to mass transfer Increase broadening due to multiple paths You can improve the separation of components in gas chromatography by: Rasing the temperature of the injection port Rasing the temperature of the column isothermally Rasing the temperature of the column using temperature programming In GC, separation between two different solutes occurs because the solutes have different solubilities in the mobile phase the solutes volatilize at different rates in the injector the solutes spend different amounts of time in the stationary phasearrow_forwardplease draw and example of the following: Show the base pair connection(hydrogen bond) in DNA and RNAarrow_forward
- Naming and drawing secondary Write the systematic (IUPAC) name for each of the following organic molecules: CH3 Z structure CH3 CH2 CH2 N-CH3 CH3-CH2-CH2-CH-CH3 NH CH3-CH-CH2-CH2-CH2-CH2-CH2-CH3 Explanation Check ☐ name ☐ 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy C Garrow_forwardC This question shows how molecular orbital (MO) theory can be used to understand the chemical properties of elemental oxygen O₂ and its anionic derivative superoxide Oz. a) Draw the MO energy diagram for both O2 and O2. Clearly label your diagram with atomic orbital names and molecular orbital symmetry labels and include electrons. Draw the Lewis structure of O2. How does the MO description of O2 differ from the Lewis structure, and how does this difference relate to the high reactivity and magnetic properties of oxygen? ) Use the MO diagram in (a) to explain the difference in bond length and bond energy between superoxide ion (Oz, 135 pm, 360 kJ/mol) and oxygen (O2, 120.8 pm, 494 kJ/mol).arrow_forwardPlease drawarrow_forward
- -Page: 8 nsition metal ions have high-spin aqua complexes except one: [Co(HO)₁]". What is the d-configuration, oxidation state of the metal in [Co(H:O))"? Name and draw the geometry of [Co(H2O)]? b) Draw energy diagrams showing the splitting of the five d orbitals of Co for the two possible electron configurations of [Co(H2O)]: Knowing that A = 16 750 cm and Пl. = 21 000 cm, calculate the configuration energy (.e., balance or ligand-field stabilization energy and pairing energy) for both low spin and high spin configurations of [Co(H2O)]. Which configuration seems more stable at this point of the analysis? (Note that 349.76 cm = 1 kJ/mol) Exchange energy (IT) was not taken into account in part (d), but it plays a role. Assuming exchange an occur within t29 and within eg (but not between tz, and ea), how many exchanges are possible in the low in configuration vs in the high spin configuration? What can you say about the importance of exchange energy 07arrow_forwardDraw everything please on a piece of paper explaining each steparrow_forwardDefine crystalline, polycrystalline and amorphous materials What crystal system and Bravais lattices are shown in the figure immediately below? What do a, b, C, a, ẞ and y represent and what are their values? You can label the Bravais lattices directly above or under the figure. C aarrow_forward
- 32. The diagrams below show the band structure of an intrinsic semiconductor at absolute zero and room temperature. Room Temperature EF E OK Ep- a) In the space below, sketch a similar pair of diagrams for an n-type semiconductor. D) Give the definition and an example of (i) an intrinsic semiconductor and (ii) an n-type semiconductor.arrow_forward29. a) i Which energy diagram best represents the d-electrons in tetrahedral [Co(NH3)4]²+? b) ii c) iii d) iv 11 ་ ↑↓ ↑t t ↑↓ ↑↓ e) none of these ii In1 According to Slater's rules, what is the effective nuclear charge experienced by a 3d electron in 30. Ge? a) 32.00 b) 21.15 c) 16.05 d) 14.00 e) 10.85arrow_forwardRegarding Lowis structuros and geometrios, Draw Lewis structures for the following: SOF4, SO, ICI, XeO2F4, SeF and XeO3. For each one, indicate the observed molecular geometry it adopts.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





