
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 16RQ
To determine
Explain the changes made in the magnetic field of the solenoid if the radius decreases by the factor of 2.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
When 1.00 g of water at 100˚C changes from the liquid to the gas phase at atmospheric pressure, its change in volume is: 1.67 x 10^-3
How much heat is added to vaporize the water?
How much work is done by the water against the atmosphere in expansion?
What is the change in the internal energy of the water?
1 m3 of pure water is heated from 10˚C to 120˚C at a constant pressure of 1 atm. The volume of the water is contained, but allowed to expand as needed remaining at 1 atm. Calculate the change in enthalpy of the water. You are provided with the following information at the conditions of 1 atm:
The density of pure water between 10˚C and 100˚C: 1000kh/m^3
The heat capacity of water: 4.18 kj/kgK
Enthalpy required to convert liquid water to gas (enthalpy of vaporization): 2260 kj/kg
The heat capacity of steam: 1.7kj/kgk
Is the reaction endothermic or exothermic? Why?
When a dilute gas expands quasi-statically from 0.50 to 4.0 L, it does 250 J of work. Assuming that the gas temperature remains constant at 300 K.
What is the change in the internal energy of the gas?
How much heat is absorbed by the gas in this process?
Chapter 18 Solutions
Applied Physics (11th Edition)
Ch. 18.2 - Find the magnetic field at 0.250 m from a long...Ch. 18.2 - Prob. 2PCh. 18.2 - What is the current in a wire if the magnetic...Ch. 18.2 - A power line runs northsouth carrying 675 A and is...Ch. 18.2 - Prob. 5PCh. 18.2 - Find the current in a wire if the magnetic field...Ch. 18.2 - A solenoid has 1000 turns of wire, is 0.320 m...Ch. 18.2 - A solenoid has 3000 turns of wire and is 0.350 m...Ch. 18.2 - A small solenoid is 0.150 m in length and 0.0150 m...Ch. 18.2 - A solenoid has 2500 turns of wire and is 0.200 m...
Ch. 18.2 - A long solenoid has 1000 turns and is 0.250 m...Ch. 18.2 - A small solenoid 0.100 m in length has 1000 turns...Ch. 18.2 - An auto mechanic wants to use a solenoid she found...Ch. 18.2 - An earthmover requires a solenoid with 2500 turns...Ch. 18 - The presence of a magnetic force field may be...Ch. 18 - The deflection of a compass needle placed near a...Ch. 18 - Ampres rule relates a. the strength of a magnetic...Ch. 18 - The unit used to express the strength of a...Ch. 18 - Describe how a strong magnetic field can be...Ch. 18 - Describe how to determine the direction of a...Ch. 18 - Describe how a magnetic field is induced by a...Ch. 18 - Describe how a generator produces current.Ch. 18 - Prob. 9RQCh. 18 - Describe how a motor works.Ch. 18 - What is a synchronous motor, and how does it work?Ch. 18 - Distinguish between a universal motor and an...Ch. 18 - Distinguish between an armature and a stator.Ch. 18 - Prob. 14RQCh. 18 - Prob. 15RQCh. 18 - Prob. 16RQCh. 18 - If the number of turns per inch in a solenoid were...Ch. 18 - Describe how to find the flux lines near a bar...Ch. 18 - How is alternating current produced by a...Ch. 18 - Find the magnetic field at 0.255 m from a long...Ch. 18 - Prob. 2RPCh. 18 - What is the current in a wire if the magnetic...Ch. 18 - A solenoid has 2000 turns of wire, is 0.452 m...Ch. 18 - A solenoid has 2750 turns of wire and is 0.182 m...Ch. 18 - A power line running northsouth carrying 500 A is...Ch. 18 - A ships compass is mistakenly placed 8.35 cm away...Ch. 18 - Figure 18.10 shows a compass near a...Ch. 18 - A coaxial cable consists of an inner conducting...Ch. 18 - Prob. 4ACCh. 18 - Prob. 5AC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A high-speed lifting mechanism supports an 881 kg object with a steel cable that is 22.0 m long and 4.00 cm^2 in cross-sectional area. Young's modulus for steel is 20.0 ⋅10^10 Pa. Determine the elongation of the cable.arrow_forwardNamor, from Wakanda Forever, sits on a throne at the bottom of the ocean in a city called Talocan (and Atlantis in the comics). Assuming he, including his gold headdress, has a density of 1085 kg/m3 and that Namor is surrounded by salt water with a density of 1027 kg/m3, what is Namor’s normal force while sitting underwater? Take Namor’s mass as 285. kg and solve as if he has a uniform density.arrow_forwardTo get there they need to travel through an area of salt-water, which seems to also be a magical portal, before arriving in a dry area. Judging by the time Maui and Moana spend falling through the water, it seems they dive 3440. ft deep. Assume the portal is non-magical salt-water, with a density of 1027 kg/m^3. Given that the air pressure above the portal is 1.013 ⋅10^5 Pa, what is the pressure when they are 3440. ft deep? 1 m = 3.28 ft. Moana would have a surface area of 1.30 m2. How much force would be acting on her at the bottom of this portal?arrow_forward
- A plank 2.00 cm thick and 15.7 cm wide is firmly attached to the railing of a ship by clamps so that the rest of the board extends 2.00 m horizontally over the sea below. A man of mass 92.9 kg is forced to stand on the very end. If the end of the board drops by 5.97 cm because of the man's weight, find the shear modulus of the wood.arrow_forwardwhen considering particle B (4,1) distances in relation to P (-4, 5), why are the y coordinates being used gto resolve the distance along the x-axis and vice-versa?arrow_forwardA 198 kg load is hung on a wire of length of 3.58 m, cross-sectional area 2.00⋅ 10-5 m2, and Young's modulus 8.00⋅10^10 Pa. What is its increase in length?arrow_forward
- I. Pushing on a File Cabinet Bob has been asked to push a heavy file cabinet down the hall to another office. It's not on rollers, so there is a lot of friction. At time t = 0 seconds, he starts pushing it from rest with increasing force until it starts to move at t = 2 seconds. He pushes the file cabinet down the hall with varying amounts of force. The velocity versus time graph of the cabinet is shown below. A. On the graphs provided below, 1. draw the net force vs. time that would produce this velocity graph; 2. draw the friction force vs. time for this motion; 3. draw the applied force (Fon Cabinet by Bob) VS. time for this motion (the first two seconds of this graph have been drawn for you). Velocity (m/s) Applied Force (N) Friction Force (N) Net Force (N) A -m B -U time (s) D time (s) time (s) time (s)arrow_forwardanswer itarrow_forwardPlease draw a sketch and a FBDarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning


Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning