Physics
Physics
5th Edition
ISBN: 9781260487008
Author: GIAMBATTISTA, Alan
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18, Problem 123P

(a)

To determine

Find the total energy stored in two capacitor.

(a)

Expert Solution
Check Mark

Answer to Problem 123P

The total energy stored in two capacitor is 175 μJ.

Explanation of Solution

Write the equation for energy.

U=12CV2 (I)

Here, U is the energy, C is the capacitance and V is potential difference.

Conclusion:

For 2.00 μF capacitor, substitute 5.00 V for V and 2.00 μF for C in equation I.

U1=12(2.00 μF)(5.00 V)2=25 μJ

For 3.00 μF capacitor, substitute 10.0 V for V and 3.00 μF for C in equation I.

U2=12(3.00 μF)(10.0 V)2=150 μJ

Then the total energy stored is U=U1+U2=25 μJ+150 μJ=175 μJ

Thus, the total energy stored in two capacitor is 175 μJ.

(b)

To determine

Find the total energy in the two capacitor and charge on each capacitor after disconnected from batteries.

(b)

Expert Solution
Check Mark

Answer to Problem 123P

The total energy in the two capacitor is 160 μJ and charge on each capacitor after disconnected from batteries are 16.0 μC and 24.0 μC.

Explanation of Solution

Write the equation for total charge.

Q=C2V2i+C3V3i (II)

Here, Q is the total charge, C2 is the capacitance of 2.00 μF capacitor, C3 is the capacitance of 3.00 μF capacitor, V2i is voltage across 2.00 μF capacitor and V3i is voltage across 3.00 μF capacitor.

Since the two capacitors are connected together the voltage across them is same, then the charge on each capacitor are,

Q2f=C2V and Q3f=C3V

From the above two equation eliminate V.

Q2fC2=Q3fC3 (III)

The total charge is written as,

Q=Q2f+Q3f (IV)

Substitute the value of Q3f from the above equation to equation III.

Q2fC2=Q3fC3=QQ2fC3

Solve the above equation to get Q2f.

Q2f(1C2+1C3)=QC3Q2f=QC3(1C2+1C3)

Q2f=QC3C2+1 (V)

Write the equation for total charge.

Utotal=12C2V2+12C3V2 (VI)

Conclusion:

Substitute 2.00 μF for C2, 3.00 μF for C3, 5.00 V for V2i and 10.0 V for V3i  in equation II.

Q=(2.00 μF)(5.00 V)+(3.00 μF)(10.0 V)=40.0 μC

Substitute 40.0 μC for Q, 2.00 μF for C2 and 3.00 μF for C3 in equation V.

Q2f=40.0 μC3.00 μF2.00 μF+1=16.0 μC

Substitute 16.0 μC for Q2f and 40.0 μC for Q in equation IV.

Q3f=40.0 μC16.0 μC=24.0 μC

Find the value of V.

V=Q2fC2=16.0 μC2.00 μF=8.00 V

Substitute 8.00 V for V, 2.00 μF for C2 and 3.00 μF for C3 in equation VI

Utotal=12(2.00 μF)(8.00 V)2+12(3.00 μF)(8.00 V)2=160 μJ

Therefore, the total energy in the two capacitor is 160 μJ and charge on each capacitor after disconnected from batteries are 16.0 μC and 24.0 μC.

(c)

To determine

Explain the reason for missing energy.

(c)

Expert Solution
Check Mark

Answer to Problem 123P

The missing energy is due to the appearance of internal energy in the wires.

Explanation of Solution

The missing energy is due to the internal energy caused by the wires connecting the capacitors during the current flowing time.

Conclusion:

Therefore, the missing energy is due to the appearance of internal energy in the wires.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.
Three point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.
The drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.

Chapter 18 Solutions

Physics

Ch. 18.6 - Prob. 18.7PPCh. 18.7 - Prob. 18.8PPCh. 18.8 - Prob. 18.9PPCh. 18.9 - Prob. 18.10PPCh. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - 6. A friend says that electric current “follows...Ch. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - Prob. 10CQCh. 18 - Prob. 11CQCh. 18 - Prob. 12CQCh. 18 - Prob. 13CQCh. 18 - Prob. 14CQCh. 18 - Prob. 15CQCh. 18 - Prob. 16CQCh. 18 - Prob. 17CQCh. 18 - Prob. 18CQCh. 18 - 19. When batteries are connected in parallel, they...Ch. 18 - 20. (a) If the resistance R1 decreases, what...Ch. 18 - Prob. 21CQCh. 18 - Prob. 22CQCh. 18 - Prob. 23CQCh. 18 - Prob. 1MCQCh. 18 - Prob. 2MCQCh. 18 - Prob. 3MCQCh. 18 - Prob. 4MCQCh. 18 - Prob. 5MCQCh. 18 - Prob. 6MCQCh. 18 - Prob. 7MCQCh. 18 - Prob. 8MCQCh. 18 - Prob. 9MCQCh. 18 - Prob. 10MCQCh. 18 - Prob. 1PCh. 18 - 2. The current in a wire is 0.500 A. (a) How much...Ch. 18 - Prob. 3PCh. 18 - Prob. 4PCh. 18 - 5. The current in the electron beam of a computer...Ch. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - Prob. 16PCh. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - 20. A copper wire of cross-sectional area 1.00 mm2...Ch. 18 - 21. An aluminum wire of diameter 2.6 mm carries a...Ch. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - 35. A battery has a terminal voltage of 12.0 V...Ch. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - Prob. 63PCh. 18 - Prob. 64PCh. 18 - Prob. 65PCh. 18 - Prob. 66PCh. 18 - Prob. 67PCh. 18 - Prob. 68PCh. 18 - Prob. 69PCh. 18 - Prob. 70PCh. 18 - Prob. 71PCh. 18 - 72. At what rate is energy dissipated in the 4.00...Ch. 18 - Prob. 73PCh. 18 - Prob. 74PCh. 18 - Prob. 75PCh. 18 - Prob. 76PCh. 18 - Prob. 77PCh. 18 - Prob. 78PCh. 18 - Prob. 79PCh. 18 - Prob. 80PCh. 18 - Prob. 81PCh. 18 - Prob. 83PCh. 18 - Prob. 82PCh. 18 - Prob. 85PCh. 18 - Prob. 84PCh. 18 - Prob. 90PCh. 18 - Prob. 86PCh. 18 - Prob. 87PCh. 18 - Prob. 88PCh. 18 - In the circuit of Problem 88, at what time after...Ch. 18 - Prob. 91PCh. 18 - Prob. 92PCh. 18 - Prob. 94PCh. 18 - Prob. 93PCh. 18 - Prob. 95PCh. 18 - Prob. 96PCh. 18 - Prob. 97PCh. 18 - Prob. 98PCh. 18 - Prob. 99PCh. 18 - Prob. 100PCh. 18 - Prob. 101PCh. 18 - Prob. 102PCh. 18 - Prob. 103PCh. 18 - Prob. 104PCh. 18 - Prob. 106PCh. 18 - Prob. 105PCh. 18 - Prob. 107PCh. 18 - Prob. 108PCh. 18 - Prob. 109PCh. 18 - Prob. 110PCh. 18 - A1 and A2 represent ammeters with negligible...Ch. 18 - Prob. 112PCh. 18 - Prob. 114PCh. 18 - Prob. 113PCh. 18 - Prob. 116PCh. 18 - Prob. 115PCh. 18 - Prob. 118PCh. 18 - Prob. 117PCh. 18 - Prob. 120PCh. 18 - Prob. 119PCh. 18 - Prob. 122PCh. 18 - Prob. 121PCh. 18 - Prob. 124PCh. 18 - Prob. 123PCh. 18 - Prob. 126PCh. 18 - Prob. 125PCh. 18 - Prob. 128PCh. 18 - Prob. 127PCh. 18 - Prob. 130PCh. 18 - Prob. 129PCh. 18 - Prob. 134PCh. 18 - Problems 131 and 132. A potentiometer is a...Ch. 18 - Prob. 132PCh. 18 - Prob. 133PCh. 18 - Prob. 136PCh. 18 - Prob. 135PCh. 18 - Prob. 138PCh. 18 - Prob. 137PCh. 18 - Prob. 139PCh. 18 - Poiseuilles law [Eq. (9-41)] gives the volume flow...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
How To Solve Any Circuit Problem With Capacitors In Series and Parallel Combinations - Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=a-gPuw6JsxQ;License: Standard YouTube License, CC-BY