STARTING OUT W/C++,...(LL)-W/ACCESS
STARTING OUT W/C++,...(LL)-W/ACCESS
9th Edition
ISBN: 9780134596174
Author: GADDIS
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 11PC
Program Plan Intro

List Search using template

Program Plan:

“IntList.h”:

  • Include the required specifications into the program.
  • Define a class template named “IntList”.
    • Declare the member variables “value” and “*next” in structure named “ListNode”.
    • Declare the constructor, copy constructor, destructor, and member functions in the class.
  • Define a copy constructor named “IntList()” as a template which takes an address of object for the “IntList” class as “const”.
    • Declare a structure pointer variable “nodePtr” and initialize it to be “nullptr”.
    • Assign “obj.head” value into the received variable “nodePtr”.
    • Make a “while” loop to copy the received values into “nodePtr”.
      •  Make a call to “appendNode()” to insert values to “nodePtr” and initialize address of “next” into “nodePtr”.
  • Define a function named “appendNode()”as a template to insert the node at end of the list.
    • Declare the structure pointer variables “newNode” and “dataPtr” for the structure named “ListNode”.
    • Assign the value “num” to the variable “newNode” and assign null to the variable “newNode”.
    • Using “if…else” condition check whether the list is empty or not, if the “head” is empty then make a new node into “head” pointer. Otherwise, make a loop to find last node in the loop.
    • Assign the value of “dataPtr” into the variable “newNode”.
  • Define a function named “print()”as a template to print the values in the list.
    • Declare the structure pointer “dataPtr” for the structure named “ListNode”.
    • Initialize the variable “dataPtr” with the “head” pointer.
    • Make a loop “while” to display the values of the list.
  • Define a function named “insertNode()”as a template to insert a value into the list.
    • Declare the structure pointer variables “newNode”, “dataPtr”, and “prev” for the structure named “ListNode”.
    • Make a “newNode” value into the received variable value “num”.
    • Use “if…else” condition to check whether the list is empty or not.
      • If the list is empty then initialize “head” pointer with the value of “newNode” variable.
      • Otherwise, make a “while” loop to test whether the “num” value is less than the list values or not.
      • Use “if…else” condition to initialize the value into list.
  • Define a function named “deleteNode()” as a template to delete a value from the list.
    • Declare the structure pointer variables “dataPtr”, and “prev” for the structure named “ListNode”.
    • Use “if…else” condition to check whether the “head” value is equal to “num” or not.
      • Initialize the variable “dataPtr” with the value of the variable “head”.
      • Remove the value using “delete” operator and reassign the “head” value into the “dataPtr”.
      • If the “num” value not equal to the “head” value, then define the “while” loop to assign the “dataPtr” into “prev”.
      • Use “if” condition to delete the “prev” pointer.
  • Define a function named “reverse()”as a template to reverse the values in a list.
    • Declare the pointer variables “newNode”, “newHead”, “nodePtr”, and “tempPtr” for the structure named “ListNode”.
    • Initialize the variable “nodePtr” with the value of the variable “head”.
    • Define a “while” loop to allocate “newNode” variable.
      • Create a “newNode” for the structure “ListNode”.
      • Store the value of “nodePtr” into “newNode” and assign address as null to the “newNode” pointer.
      • Using “if…else” condition swap the values of “newHead” and “newNode”.
        • Assign the address of “next” node into “nodePtr”.
      • Initialize the variable “head” with the value of the variable “newHead”.
  • Define a function named “destroy()”as a template to destroy the list values from the memory.
    • Declare the structure pointer variables “dataPtr”, and “nextNode” for the structure named “ListNode”.
    • Initialize the “head” value into the “dataPtr”.
    • Define a “while” loop to make the links of node into “nextNode” and remove the node using “delete” operator.
  • Define a function named “insert()” as a template with the arguments of “value” and “pos” to insert a value at specified location.
    • Declare a pointer variable “newNode” for the structure “ListNode”.
    • Assign the value of received variable “value” into “newNode” value and make address of “newNode” into “nullptr”.
    • Using “if” condition to check whether the list is empty or not.
      • If list is empty, initialize the variable “head” with the value of the variable “newNode”.
    • Using “if” condition to insert the value of received variable “pos” into the list.
      • Assign the “head” node into address of “newNode” .
      • Initialize the variable “head” with the value of the variable “newNode”.
      • Using “while” loop to insert the value at specified position in the list.
  • Define a function named “removeByPos()” as a template with an argument “pos” to remove a value at specified position in list.
    • Declare a pointer variable “temp” for the structure “ListNode”.
    • Using “if” condition, check whether the list is “empty” or not. If the list is empty, return “null” to “main()” function.
    • Otherwise, using “while” loop to traverse the list to find the “pos” in list.
    • Using “if…else” condition, check whether the received value of “pos” is value of “head” or not.
      • If the condition is true, delete “head” node from the list.
      • Otherwise, assign pointers to the next node of removable value then delete the node using “delete” operator.
  • Define the destructor to call the member function “destroy()” in the list.
  • Define a function named “search()” as a template to find the value of “num” in the list.
    • Declare a variable “count” in type of “int”.
    • Declare a structure pointer variable “*dataPtr” for the structure named “ListNode”.
    • Define a “while” loop to search the value in the list.
      • Using “if…else” statement, check the value of “dataPtr” in the list.
        • If the condition is “true”, return the value “count” variable.
        • Otherwise, point the “next” value of “dataPtr” and then increment the value of “count” variable.
    • Return a value “-1” to the function call.

“Main.cpp”:

  • Include the required header files into the program.
  • Declare an object named “obj” for the class “IntList”.
  • Make a call to functions for insert and append operations.
  • Make a call to “print()” function to display the list on the screen.
  • Make a call to “search()” function to find the value in the list.

Blurred answer
Students have asked these similar questions
We are considering the RSA encryption scheme. The involved numbers are small, so the communication is insecure.  Alice's public key (n,public_key) is (247,7). A code breaker manages to factories  247 = 13 x 19  Determine Alice's secret key. To solve the problem, you need not use the extended Euclid algorithm, but you may assume that her private key is one of the following numbers 31,35,55,59,77,89.
Consider the following Turing Machine (TM). Does the TM halt if it begins on the empty tape? If it halts, after how many steps? Does the TM halt if it begins on a tape that contains a single letter A followed by blanks? Justify your answer.
Pllleasassseee ssiiirrrr soolveee thissssss questionnnnnnn
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning