EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 10P

Use Newton's interpolating polynomial to determine y at x = 8 to the best possible accuracy. Compute the finite divided differences as in Fig. 18.5 and order your points to attain optimal accuracy and convergence.

x 0 1 2 5.5 11 13 16 18
y 0.5 3.134 5.3 9.9 10.2 9.35 7.2 6.2
Expert Solution & Answer
Check Mark
To determine

To calculate: The value of y at x=8 by the use of Newton’s interpolating polynomial where the provided data are,

x 0 1 2 5.5 11 13 16 18
y 0.5 3.134 5.3 9.9 10.2 9.35 7.2 6.2

Answer to Problem 10P

Solution:

Thevalue of y at x=8 by zero order Newton’s interpolating polynomial is 9.9, by first order Newton’s interpolating polynomial is 10.036, by second order Newton’s interpolating polynomial is 10.516, by third order Newton’s interpolating polynomial is 10.775 and by fourth order Newton’s interpolating polynomial is 10.812.

Explanation of Solution

Given Information:

The provided data are,

x 0 1 2 5.5 11 13 16 18
y 0.5 3.134 5.3 9.9 10.2 9.35 7.2 6.2

Formula used:

The zero-order Newton’s interpolation formula:

f0(x)=b0

The first-order Newton’s interpolation formula:

f1(x)=b0+b1(xx0)

The second- order Newton’s interpolating polynomial is given by,

f2(x)=b0+b1(xx0)+b2(xx0)(xx1)

The n th-order Newton’s interpolating polynomial is given by,

fn(x)=b0+b1(xx0)+b2(xx0)(xx1)++bn(xx0)(xx1)(xxn1)

Where,

b0=f(x0)b1=f[x1,x0]b2=f[x2,x1,x0]b2=f[xn,,x2,x1,x0]

The first finite divided difference is,

f[xi,xj]=f(xi)f(xj)xixj

And, the n th finite divided difference is,

f[xn,xn1,...,x1,x0]=f[xn,xn1,...,x1]f[xn1,...,x1,x0]xnx0

Calculation:

First, order the provided value as close to 8 as below,

x0=5.5,x1=11,x2=13,x3=2,x4=1,x5=16,x6=0 and x6=18.

Therefore,

f(x0)=9.9f(x1)=10.2f(x2)=9.35f(x3)=5.3

And,

f(x4)=3.134f(x5)=7.2f(x6)=0.5f(x7)=6.2

The first divided difference is,

f[x1,x0]=f(x1)f(x0)x1x0=10.29.9115.5=0.35.5=0.054545

And,

f[x2,x1]=f(x2)f(x1)x2x1=9.3510.21311=0.852=0.425

And,

f[x3,x2]=f(x3)f(x2)x3x2=5.39.35213=4.0511=0.368182

Similarly,

f[x4,x3]=2.166f[x5,x4]=0.271067f[x6,x5]=0.41875f[x7,x6]=0.31667

The second divided difference is,

f[x2,x1,x0]=f[x2,x1]f[x1,x0]x2x0=0.4250.054545135.5=0.4795457.5=0.06394

And,

f[x3,x2,x1]=f[x3,x2]f[x2,x1]x3x1=0.368182(0.425)211=0.7931829=0.08813

And,

f[x4,x3,x2]=f[x4,x3]f[x3,x2]x4x2=2.1660.368182113=1.79781812=0.14982

Similarly,

f[x5,x4,x3]=0.13535f[x6,x5,x4]=0.147683f[x7,x6,x5]=0.05104

The third divided difference is,

f[x3,x2,x1,x0]=f[x3,x2,x1]f[x2,x1,x0]x3x0=(0.08813)(0.06394)25.5=0.024193.5=0.00691143

And,

f[x4,x3,x2,x1]=f[x4,x3,x2]f[x3,x2,x1]x4x1=(0.14982)(0.08813)111=0.0616910=0.006169

Similarly,

f[x5,x4,x3,x2]=0.004822f[x6,x5,x4,x3]=0.0061665f[x7,x6,x5,x4]=0.005513

The fourth divided difference is,

f[x4,x3,x2,x1,x0]=f[x4,x3,x2,x1]f[x3,x2,x1,x0]x4x0=(0.006169)(0.00691143)15.5=0.000742434.5=0.000165

And,

f[x5,x4,x3,x2,x1]=f[x5,x4,x3,x2]f[x4,x3,x2,x1]x5x1=(0.004822)(0.006169)1611=0.0013475=0.0002694

And,

f[x6,x5,x4,x3,x2]=f[x6,x5,x4,x3]f[x5,x4,x3,x2]x6x2=(0.0061665)(0.004822)013=0.001344513=0.0001034

And,

f[x7,x6,x5,x4,x3]=f[x7,x6,x5,x4]f[x6,x5,x4,x3]x7x3=(0.005513)(0.0061665)182=0.000653516=0.00004084

The fifth divided difference is,

f[x5,x4,x3,x2,x1,x0]=f[x5,x4,x3,x2,x1]f[x4,x3,x2,x1,x0]x5x0=(0.0002694)(0.000165)165.5=0.000434410.5=0.0000414

And,

f[x6,x5,x4,x3,x2,x1]=f[x6,x5,x4,x3,x2]f[x5,x4,x3,x2,x1,x0]x6x1=(0.0001034)(0.0002694)011=0.00016611=0.0000151

And,

f[x7,x6,x5,x4,x3,x2]=f[x7,x6,x5,x4,x3]f[x6,x5,x4,x3,x2]x7x2=(0.00004048)(0.0001034)1813=0.000143885=0.000028776

The sixth divided difference is,

f[x6,x5,x4,x3,x2,x1,x0]=f[x6,x5,x4,x3,x2,x1]f[x5,x4,x3,x2,x1,x0]x6x0=(0.0000151)(0.0000414)05.5=0.00005655.5=0.0000103

And,

f[x7,x6,x5,x4,x3,x2,x1]=f[x7,x6,x5,x4,x3,x2]f[x6,x5,x4,x3,x2,x1]x7x1=(0.0000288776)(0.0000151)1811=0.000013787=0.000002

The seventh divided difference is,

f[x7,x6,x5,x4,x3,x2,x1,x0]=f[x7,x6,x5,x4,x3,x2,x1]f[x6,x5,x4,x3,x2,x1,x0]x7x0=(0.000002)(0.0000103)185.5=0.000012312.5=0.000001

Therefore, the difference table can be summarized as,

i xi f(xi) First Second Third Fourth Fifth Sixth 7th
0 1 2 3 4 5 6 7 5.5 11 13 2 1 16 0 18 9.9 10.2 9.35 5.3 3.134 7.2 0.5 6.2 0.054545-0.425 0.3682 2.166 0.2711 0.4188 0.3167 0.06394 0.08813 0.14982 0.13535 0.14768 0.05104 0.0069 0.0062 0.0048 0.0062 0.0055 0.0002 0.0003 0.0001 0.00004 0.00004 0.00002 0.00003 0.00001 0.000002 0.00

Since, the divided difference of fifth order is nearly equals to zero. So, the fourth-order polynomial is the optimal.

Therefore, the zero-order Newton’s interpolation polynomial is,

f0(x)=9.9

Thus, the value of y at x=8 is,

y=9.9

The first-order Newton’s interpolation polynomial is:

f1(x)=9.9+0.054545(x5.5)

Thus, the value of y at x=8 is,

y=9.9+0.054545(85.5)=9.9+0.054545×2.5=9.9+0.1363625=10.036

The second- order Newton’s interpolating polynomial is,

f2(x)=9.9+0.054545(x5.5)0.06394(x5.5)(x11)

Thus, the value of y at x=8 is,

y=9.9+0.054545(85.5)0.06394(85.5)(811)=10.0360.06394×2.5×(3)=10.036+0.47955=10.516

The third-order Newton’s interpolating polynomial is,

f3(x)={9.9+0.054545(x5.5)0.06394(x5.5)(x11)+0.0069(x5.5)(x11)(x13)}

Thus, the value of y at x=8 is,

y={9.9+0.054545(85.5)0.06394(85.5)(811)+0.0069(85.5)(811)(813)}=10.516+0.0069×2.5×(3)×(5)=10.775

The fourth-order Newton’s interpolating polynomial is,

f4(x)={9.9+0.054545(x5.5)0.06394(x5.5)(x11)+0.0069(x5.5)(x11)(x13)+0.000165(x5.5)(x11)(x13)(x2)}

Thus, the value of y at x=8 is,

y={9.9+0.054545(85.5)0.06394(85.5)(811)+0.0069(85.5)(811)(813)+0.000165(85.5)(811)(813)(82)}=10.775+0.000165×2.5×(3)×(5)×6=10.812

Hence, the value of y at x=8 by zero order Newton’s interpolating polynomial is 9.9, by first order Newton’s interpolating polynomial is 10.036, by second order Newton’s interpolating polynomial is 10.516, by third order Newton’s interpolating polynomial is 10.775 and by fourth order Newton’s interpolating polynomial is 10.812

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Practise question need help on
Can you show explaination and working. The answer from the text book is Q=5.03 X 10^-3
practise question

Chapter 18 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY