The reactions that take place at the cathode and the anode when molten NiBr 2 , AlF 3 and MnI 2 are electrolyzed. Concept introduction: The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions. To determine: The reactions that take place at the cathode and the anode when molten NiBr 2 is electrolyzed. The reaction taking place at cathode is, Ni 2 + + 2 e − → Ni The reaction taking place at anode is, 2 Br − → Br 2 + 2 e −
The reactions that take place at the cathode and the anode when molten NiBr 2 , AlF 3 and MnI 2 are electrolyzed. Concept introduction: The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions. To determine: The reactions that take place at the cathode and the anode when molten NiBr 2 is electrolyzed. The reaction taking place at cathode is, Ni 2 + + 2 e − → Ni The reaction taking place at anode is, 2 Br − → Br 2 + 2 e −
Solution Summary: The author describes the electrolysis of molten NiBr_2 in an electrolytic cell.
Definition Definition Process of breaking down ionic compounds into their constituent elements by passing a direct electric current through the compound in a fluid state.
Chapter 18, Problem 107E
(a)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
NiBr2,
AlF3 and
MnI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
NiBr2 is electrolyzed.
The reaction taking place at cathode is,
Ni2++2e−→Ni
The reaction taking place at anode is,
2Br−→Br2+2e−
(b)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
NiBr2,
AlF3 and
MnI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
AlF3 is electrolyzed.
The reaction taking place at cathode is,
Al3++3e−→Al
The reaction taking place at anode is,
2F−→F2+2e−
(c)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
NiBr2,
AlF3 and
MnI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
NiBr2 is electrolyzed.
k
https://app.aktiv.com
STARTING AMOUNT
6 58°F
Clear
+
F1
X
Dimensional Analysis - Aktiv Chemistry
Your Aktiv Learning trial expires on 02/25/25 at 02:14 PM
Question 19 of 22
Polyethylene terephthalate (PET) is used in plastic water bottles. A water bottle has a
mass of 14.0 grams. Given a density of 1.38 g/cm³, what is the volume of the
plastic used to make the water bottle in cm³ ?
ADD FACTOR
ANSWER
RESET
ว
100
14.0
0.01
10.1
1000
0.099
1.38
0.001
Q Search
F5
-O+
F6
F7
+
F3
F2
W
E
S4
ST
#3
F4
%
5
Y
R
S
&
7
cm³
g/cm³
g
ם
F8
* 00
8
F9
P
ل
DOD
S
F10
F11
F12
Insert
D
F
G
H
J
K
+ 11
A doctor gives a patient 10 Ci of beta radiation. How many betaparticles would the patient receive in 1 minute? (1 Ci = 3.7 x 1010d/s)
Part C
IN
H
N.
Br₂ (2 equiv.)
AlBr3
Draw the molecule on the canvas by choosing buttons from the Tools (for bonds and
+
e
(×)
H± 12D
T
EXP.
L
CONT.
ד
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell