Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = – k ▿ T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s- K . A temperature function for a region D is given. Find the net outward heat flux ∬ S F ⋅ n d S = − k ∬ S ∇ T ⋅ n d S across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1 . 45. T ( x , y , z ) = 100 e − x 2 − y 2 − z 2 D is the sphere of radius a centered at the origin.
Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = – k ▿ T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s- K . A temperature function for a region D is given. Find the net outward heat flux ∬ S F ⋅ n d S = − k ∬ S ∇ T ⋅ n d S across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1 . 45. T ( x , y , z ) = 100 e − x 2 − y 2 − z 2 D is the sphere of radius a centered at the origin.
Solution Summary: The author explains the radial field of the Divergence Theorem.
Heat transferFourier’s Law of heat transfer (or heat conduction) states that the heat flow vectorFat a point is proportional to the negative gradient of the temperature; that is,F = –k▿T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s-K. A temperature function for a region D is given. Find the net outward heat flux
∬
S
F
⋅
n
d
S
=
−
k
∬
S
∇
T
⋅
n
d
S
across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1.
45.
T
(
x
,
y
,
z
)
=
100
e
−
x
2
−
y
2
−
z
2
D is the sphere of radius a centered at the origin.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
After a great deal of experimentation, two college senior physics majors determined that when a bottle of French champagne is shaken several times, held upright, and uncorked,
its cork travels according to the function below, where s is its height (in feet) above the ground t seconds after being released.
s(t)=-16t² + 30t+3
a. How high will it go?
b. How long is it in the air?
+6x²+135x+1) (0≤x≤10). a) Find the number of units
The total profit P(x) (in thousands of dollars) from a sale of x thousand units of a new product is given by P(x) = In (-x²+6x² + 135x+
that should be sold in order to maximize the total profit. b) What is the maximum profit?
The fox population in a certain region has an annual growth rate of 8 percent per year. It is estimated that the
population in the year 2000 was 22600.
(a) Find a function that models the population t years after 2000 (t = 0 for 2000).
Your answer is P(t)
=
(b) Use the function from part (a) to estimate the fox population in the year 2008.
Your answer is (the answer should be an integer)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.