THERMODYNAMICS LLF W/ CONNECT ACCESS
THERMODYNAMICS LLF W/ CONNECT ACCESS
9th Edition
ISBN: 9781264446889
Author: CENGEL
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 17.7, Problem 110P

Steam enters a converging nozzle at 5.0 MPa and 400°C with a negligible velocity, and it exits at 3.0 MPa. For a nozzle exit area of 75 cm2, determine the exit velocity, mass flow rate, and exit Mach number if the nozzle (a) is isentropic and (b) has an efficiency of 94 percent.

a)

Expert Solution
Check Mark
To determine

The exit velocity, mass flow rate, and exit Mach number if the nozzle is isentropic.

Answer to Problem 110P

The exit velocity of the stream is 528.5m/s.

The mass flow rate is 46.08kg/s.

The Mach number at the exit of nozzle is 0.917.

Explanation of Solution

For isentropic,

The flow of steam through the nozzle is steady and isentropic.

Write the expression of energy balance equation for the converging-diverging nozzle.

h1+V12/2=h2+V22/2

Inlet velocity is equal to zero V1=0.

V2=2(h1h2) (I)

Here, enthalpy at exit is h2, enthalpy at inlet is h1, velocity of steam at the inlet of nozzle is V1, and velocity of steam at exit of nozzle is V2 .

Write the expression to calculate the exit area of the nozzle.

A2=m˙v2V2m˙=A2V2v2 (II)

Here, mass flow rate of steam is m˙ , specific volume of the steam at the exit is v2 .

Write the expression to calculate the velocity of sound through the steam at the exit of nozzle.

c2=(Pρ)s1/2=(ΔPΔ(1/v))s1/2 (III)

Here, pressure drop in the nozzle is ΔP, and drop in the specific volume of the steam is Δ(1/v).

Write the expression to calculate the Mach number for the steam at the exit of nozzle.

Ma2=V2c2 (IV)

Here, Mach number of the steam at the exit is Ma2 .

Conclusion:

Refer Table A-6, “Superheated water”, obtain the values of h01, and s2s at inlet pressure of 5MPa and temperature of 400°C as 3196.7kJ/kg, and 6.6483kJ/kgK respectively.

Here, stagnation enthalpy at the inlet is h01, at superheated condition the entropy of saturated steam is s2s.

Refer Table A-6, “Superheated water”, obtain the values of h2 at an entropy of 6.6483kJ/kgK and exit pressure of 3MPa as 3057kJ/kg.

The stagnation enthalpy of steam at the inlet is equal to the actual enthalpy

at the inlet (h01=h1).

Substitute 3196.7kJ/kg for h1 and 3057kJ/kg for h2 in Equation (II).

V2=2(3196.7kJ/kg3057kJ/kg)=2(3196.7kJ/kg3057kJ/kg)(1000m2/s21kJ/kg)=528.5m/s

Thus, the exit velocity of the stream is 528.5m/s.

Refer Table A-6, “Superheated water”, obtain the value of v2 at the entropy of 7.7642kJ/kgK and a exit pressure of 3MPa as 0.08601m3/kg.

Substitute 75cm2 for A, 0.08601m3/kg for v2, and 528.5m/s  for V2 in Equation (III).

m˙=75cm2×528.5m/s0.08601m3/kg=75cm2(1m210000cm2)×528.5m/s0.08601m3/kg=46.08kg/s

Therefore, the mass flow rate is 46.08kg/s.

Refer Table A-6, “Superheated water”, obtain the value of specific volume of steam at the entropy of 7.7642kJ/kgK at pressure just below and above the specified pressure of 2.5MPa and 3.5MPa as 0.09906m3/kg and 0.07632m3/kg respectively.

Substitute (35002500)kPa for ΔP, and (10.0990610.07632)kg/m3 for Δ(1/v) in Equation (IV).

c2=((35002500)kPa(10.0990610.07632)kg/m3)1/2=((35002500)kPa(10.0990610.07632)kg/m3(1000m2/s21kPam3))1/2=576.6m/s

Substitute 576.6m/s for c2, and 528.5m/s for V2 in Equation (V).

Ma2=528.5m/s576.6m/s=0.917

Hence, the Mach number at the exit of nozzle is 0.917.

b)

Expert Solution
Check Mark
To determine

The exit velocity, mass flow rate, and exit Mach number if the has an efficiency of 94 percent.

Answer to Problem 110P

The exit velocity of the stream is 512.4m/s.

The mass flow rate is 44.34kg/s.

The Mach number at the exit of nozzle is 0.885.

Explanation of Solution

Nozzle has an efficiency of 94 percent:

Write the expression for the efficiency of nozzle.

ηN=h01h2h01h2s (V)

Here, efficiency of nozzle is ηN, stagnation enthalpy at the inlet is h01, enthalpy at exit is h2, and superheated enthalpy at exit is h2s.

Write the expression of energy balance equation for the converging-diverging nozzle.

h1+V12/2=h2+V22/2

Inlet velocity is equal to zero V1=0.

V2=2(h1h2) (VI)

Here, velocity of steam at the inlet of nozzle is V1, and velocity of steam at exit of nozzle is V2 .

Write the expression to calculate the exit area of the nozzle.

A2=m˙v2V2 (VII)

Here, mass flow rate of steam is m˙ , specific volume of the steam at the exit is v2 .

Write the expression to calculate the velocity of sound through the steam at the exit of nozzle.

c2=(Pρ)s1/2=(ΔPΔ(1/v))s1/2 (VIII)

Here, pressure drop in the nozzle is ΔP, and drop in the specific volume of the steam is Δ(1/v).

Write the expression to calculate the Mach number for the steam at the exit of nozzle.

Ma2=V2c2 (IX)

Here, Mach number of the steam at the exit is Ma2 .

Conclusion:

Refer Table A-6, “Superheated water”, obtain the values of h01, and s2s at inlet pressure of 5MPa and temperature of 400°C as 3196.7kJ/kg, and 6.6483kJ/kgK respectively.

Here, at superheated condition the entropy of saturated steam is s2s.

Refer Table A-6, “Superheated water”, obtain the values of h2s at an entropy of 6.6483kJ/kgK and a pressure of 3MPa as 3057kJ/kg.

Substitute 3057kJ/kg for h2s, 3196.7kJ/kg for h01, and 0.90 for ηN in Equation (V).

94%=3196.7kJ/kgh23196.7kJ/kg3057kJ/kg94(1100)=3196.7kJ/kgh23196.7kJ/kg3057kJ/kgh2=3065.4kJ/kg

The stagnation enthalpy of steam at the inlet is equal to the actual enthalpy

at the inlet (h01=h1).

Substitute 3196.7kJ/kg for h1 and 3065.4kJ/kg for h2 in Equation (VI).

V2=2(3196.7kJ/kg3065.4kJ/kg)=2(3196.7kJ/kg3065.4kJ/kg)(1000m2/s21kJ/kg)=512.4m/s

Thus, the exit velocity of the stream is 512.4m/s.

Refer Table A-6, “Superheated water”, obtain the value of v2 at the entropy of 7.7642kJ/kgK and a exit pressure of 3MPa as 0.08666m3/kg.

Substitute 75cm2 for A2, 0.08666m3/kg for v2, and 512.4m/s for V2 in Equation (VII).

m˙=75cm2×512.4m/s0.08666m3/kg=75cm2(1m210000cm2)×512.4m/s0.08666m3/kg=44.34kg/s

Thus, the mass flow rate is 44.34kg/s.

Refer Table A-6, “Superheated water”, obtain the value of specific volume of steam Δ(1/v) at the entropy of 7.7642kJ/kgK at pressure just below and above the specified pressure of 2.5MPa and 3.5MPa as 0.09981m3/kg and 0.07689m3/kg respectively.

Substitute (35002500)kPa for ΔP, and (10.0998110.07689)kg/m3 for Δ(1/v) in Equation (VIII).

c2=((35002500)kPa(10.0998110.07689)kg/m3)1/2=((35002500)kPa(10.0998110.07689)kg/m3(1000m2/s21kPam3))1/2=578.7m/s

Substitute 578.7m/s for c2, and 512.4m/s for V2 in Equation (IX).

Ma2=512.4m/s578.7m/s=0.885

Thus, the Mach number at the exit of nozzle is 0.885.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
This is an old practice exam. Fce = 110lb and FBCD = 62 lb but why
Quiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1 = 4mm, for w2 h2 = 6mm, and for w3 is h3 =6.5 mm. Determine the safety factor (S.f) for the welds. F=29 kN. Use an AWS Electrode type (E100xx). 163 mm S 133 mm 140 mm Please solve the question above I solved the question but I'm sure the answer is wrong the link : https://drive.google.com/file/d/1w5UD2EPDiaKSx3W33aj Rv0olChuXtrQx/view?usp=sharing
Q2: (15 Marks) A water-LiBr vapor absorption system incorporates a heat exchanger as shown in the figure. The temperatures of the evaporator, the absorber, the condenser, and the generator are 10°C, 25°C, 40°C, and 100°C respectively. The strong liquid leaving the pump is heated to 50°C in the heat exchanger. The refrigerant flow rate through the condenser is 0.12 kg/s. Calculate (i) the heat rejected in the absorber, and (ii) the COP of the cycle. Yo 8 XE-V lo 9 Pc 7 condenser 5 Qgen PG 100 Qabs Pe evaporator PRV 6 PA 10 3 generator heat exchanger 2 pump 185 absorber

Chapter 17 Solutions

THERMODYNAMICS LLF W/ CONNECT ACCESS

Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Text book image
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License